Числа без остатка это

Числа без остатка это

Все делители числа

Все делители, на которые данное число делится нацело можно получить из разложения числа на простые множители.

Нахождение всех делителей числа выполняется следующим образом:

  1. Сначала нужно разложить данное число на простые множители.
  2. Выписываем каждый полученный простой множитель (без повторов, если какой-то множитель повторяется).
  3. Далее, находим всевозможные произведения всех полученных простых множителей между собой и добавляем их к выписанным простым множителям.
  4. В конце добавляем в качестве делителя единицу.

Например, найдём все делители числа 40. Раскладываем число 40 на простые множители:

Выписываем (без повторов) каждый полученный простой множитель – это 2 и 5.

Далее находим всевозможные произведения всех полученных простых множителей между собой:

2 · 2 = 4
2 · 2 · 2 = 8
2 · 5 = 10
2 · 2 · 5 = 20
2 · 2 · 2 · 5 = 40

Добавляем в качестве делителя 1. В итоге получаем все делители, на которые число 40 делится без остатка:

1, 2, 4, 5, 8, 10, 20, 40

Других делителей у числа 40 нет.

Калькулятор нахождения всех делителей

Данный калькулятор поможет вам получить все делители числа. Просто введите число и нажмите кнопку "Вычислить".

Статья разбирает понятие деления целых чисел с остатком. Докажем теорему о делимости целых чисел с остатком и просмотрим связи между делимыми и делителями, неполными частными и остатками. Рассмотрим правила, когда производится деление целых чисел с остатками, рассмотрев подробно на примерах. В конце решения выполним проверку.

Общее представление о делении целых чисел с остатками

Деление целых чисел с остатком рассматривается как обобщенное деление с остатком натуральных чисел. Это выполняется потому, что натуральные числа – это составная часть целых.

Деление с остатком произвольного числа говорит о том, что целое число a делится на число b , отличное от нуля. Если b = 0 , тогда не производят деление с остатком.

Также как и деление натуральных чисел с остатком, производится деление целых чисел a и b , при b отличном от нуля, на c и d . В этом случае a и b называют делимым и делителем, а d – остатком деления, с – целое число или неполное частное.

Если считать, что остаток – это целое неотрицательное число, тогда его величина не больше модуля числа b . Запишем таким образом: 0 ≤ d ≤ b . Данная цепочка неравенств используется при сравнении 3 и более количества чисел.

Если с – неполное частное, тогда d – остаток от деления целого числа a на b , кратко можно зафиксировать: a : b = c (ост. d ).

Остаток при делении чисел a на b возможен нулевой, тогда говорят, что a делится на b нацело, то есть без остатка. Деление без остатка считается частным случаем деления.

Если делим ноль на некоторое число, получаем в результате ноль. Остаток деления также будет равен нулю. Это можно проследить из теории о делении нуля на целое число.

Теперь рассмотрим смысл деления целых чисел с остатком.

Известно, что целые положительные числа – натуральные, тогда при делении с остатком получится такой же смысл, как и при делении натуральных чисел с остатком.

При делении целого отрицательного числа а на целое положительное b имеется смысл. Рассмотрим на примере. Представив ситуацию, когда имеем долг предметов в количестве a , которое необходимо погасить b человек. Для этого необходимо каждому внести одинаковый вклад. Чтобы определить величину долга для каждого, необходимо обратить внимание на величину частного с . Остаток d говорит о том, что известно количество предметов после расплаты с долгами.

Рассмотрим на примере с яблоками. Если 2 человека должны 7 яблок. В случае, если посчитать, что каждый должен вернуть по 4 яблока, после полного расчета у них останется 1 яблоко. Запишем в виде равенства это: ( − 7 ) : 2 = − 4 ( о с т . 1 ) .

Деление любого числа а на целое не имеет смысла, но возможно как вариант.

Теорема о делимости целых чисел с остатком

Мы выявили, что а – это делимое, тогда b – это делитель, с – неполное частное, а d – остаток. Они между собой связаны. Эту связь покажем при помощи равенства a = b · c + d . Связь между ними характеризуется теоремой делимости с остатком.

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом: a = b · q + r , где q и r – это некоторые целые числа. Тут имеем 0 ≤ r ≤ b .

Докажем возможность существования a = b · q + r .

Если существуют два числа a и b , причем a делится на b без остатка, тогда из определения следует, что имеется число q , что будет верно равенство a = b · q . Тогда равенство можно считать верным: a = b · q + r при r = 0 .

Если посчитать, что b – целое положительное число, тогда, следует выбрать целое q так, чтобы произведение b · q не было больше значения числа а , а произведение b · ( q + 1 ) было больше, чем a .

Тогда необходимо взять q такое, чтобы данное неравенством b · q a b · ( q + 1 ) было верным. Необходимо вычесть b · q из всех частей выражения. Тогда придем к неравенству такого вида: 0 a − b · q b .

Читайте также:  Телевизор без кабеля в квартире

Имеем, что значение выражения a − b · q больше нуля и не больше значения числа b, отсюда следует, что r = a − b · q . Получим, что число а можем представить в виде a = b · q + r .

Теперь необходимо рассмотреть возможность представления a = b · q + r для отрицательных значений b .

Модуль числа получается положительным, тогда получим a = b · q 1 + r , где значение q 1 – некоторое целое число, r – целое число, которое подходит условию 0 ≤ r b . Принимаем q = − q 1 , получим, что a = b · q + r для отрицательных b .

Доказательство единственности

Допустим, что a = b · q + r , q и r являются целыми числами с верным условием 0 ≤ r b , имеется еще одна форма записи в виде a = b · q 1 + r 1 , где q 1 и r 1 являются некоторыми числами, где q 1 ≠ q , 0 ≤ r 1 b .

Когда из левой и правых частей вычитается неравенство, тогда получаем 0 = b · ( q − q 1 ) + r − r 1 , которое равносильно r — r 1 = b · q 1 — q . Так как используется модуль, получим равенство r — r 1 = b · q 1 — q .

Заданное условие говорит о том, что 0 ≤ r b и 0 ≤ r 1 b запишется в виде r — r 1 b . Имеем, что q и q 1 – целые, причем q ≠ q 1 , тогда q 1 — q ≥ 1 . Отсюда имеем, что b · q 1 — q ≥ b . Полученные неравенства r — r 1 b и b · q 1 — q ≥ b указывают на то, что такое равенство в виде r — r 1 = b · q 1 — q невозможно в данном случае.

Отсюда следует, что по-другому число a быть представлено не может, кроме как такой записью a = b · q + r .

Связь между делимым, делителем, неполным частным и остатком

При помощи равенства a = b · c + d можно находить неизвестное делимое a , когда известен делитель b с неполным частным c и остатком d .

Определить делимое, если при деление получим — 21 , неполное частное 5 и остаток 12 .

Необходимо вычислить делимое a при известном делителе b = − 21 , неполным частным с = 5 и остатком d = 12 . Нужно обратиться к равенству a = b · c + d , отсюда получим a = ( − 21 ) · 5 + 12 . При соблюдении порядка выполнения действий умножим — 21 на 5 , после этого получаем ( − 21 ) · 5 + 12 = − 105 + 12 = − 93 .

Ответ: — 93 .

Связь между делителем и неполным частным и остатком можно выразить при помощи равенств: b = ( a − d ) : c , c = ( a − d ) : b и d = a − b · c . С их помощью мы можем вычислить делитель, неполное частное и остаток. Это сводится к постоянному нахождению остатка от деления целого целых чисел a на b с известным делимым, делителем и неполным частным. Применяется формула d = a − b · c . Рассмотрим решение подробно.

Найти остаток от деления целого числа — 19 на целое 3 при известном неполном частном равном — 7 .

Чтобы вычислить остаток от деления, применим формулу вида d = a − b · c . По условию имеются все данные a = − 19 , b = 3 , c = − 7 . Отсюда получим d = a − b · c = − 19 − 3 · ( − 7 ) = − 19 − ( − 21 ) = − 19 + 21 = 2 (разность − 19 − ( − 21 ) . Данный пример вычислен по правилу вычитания целого отрицательного числа.

Ответ: 2 .

Деление с остатком целых положительных чисел, примеры

Все целые положительные числа являются натуральными. Отсюда следует, что деление выполняется по всем правилам деления с остатком натуральных чисел. Скорость выполнения деления с остатком натуральных чисел важна, так как на нем основано не только деление положительных, но и правила деления целых произвольных.

Самый удобный метод деления – это столбик, так как проще и быстрее получить неполное или просто частное с остатком. Рассмотрим решение более подробно.

Произвести деление 14671 на 54 .

Данное деление необходимо выполнять столбиком:

То есть неполное частное получается равным 271 , а остаток – 37 .

Ответ: 14 671 : 54 = 271 . (ост. 37 )

Правило деления с остатком целого положительного числа на целое отрицательное, примеры

Чтобы выполнить деление с остатком положительного числа на целое отрицательное, необходимо сформулировать правило.

Неполное частное от деления целого положительного a на целое отрицательное b получаем число, которое противоположно неполному частному от деления модулей чисел a на b . Тогда остаток равен остатку при делении a на b .

Отсюда имеем, что неполное частное от деления целого полодительного числа на целое отрицательное число считают целым неположительным числом.

  • найти модули делимого и делителя;
  • делить модуль делимого на модуль делителя, тогда получим неполное частное и
  • остаток;
  • запишем число противоположное полученному.

Рассмотрим на примере алгоритма деления целого положительного числа на целое отрицательное.

Выполнить деление с остатком 17 на — 5 .

Применим алгоритм деления с остатком целого положительного числа на целое отрицательное. Необходимо разделить 17 на — 5 по модулю. Отсюда получим, что неполное частное равно 3 , а остаток равен 2 .

Получим, что искомое число от деления 17 на — 5 = — 3 с остатком равным 2 .

Ответ: 17 : ( − 5 ) = − 3 (ост. 2 ).

Необходимо разделить 45 на — 15 .

Необходимо разделить числа по модулю. Число 45 делим на 15 , получим частное 3 без остатка. Значит, число 45 делится на 15 без остатка. В ответе получаем — 3 , так как деление производилось по модулю.

45 : ( — 15 ) = 45 : — 15 = — 45 : 15 = — 3

Ответ: 45 : ( − 15 ) = − 3 .

Читайте также:  Аппарат для сушки мяса

Деление с остатком целого отрицательного числа на целое положительное, примеры

Формулировка правила деления с остатком выглядит следующим образом.

Для того, чтобы получить неполное частное с при делении целого отрицательного a на положительное b , нужно применить противоположное данному числу и вычесть из него 1 , тогда остаток d будет вычисляться по формуле: d = a − b · c .

Исходя из правила можно сделать вывод, что при делении получим целое неотрицательное число. Для точности решения применяют алгоритм деления а на b с остатком:

  • найти модули делимого и делителя;
  • делить по модулю;
  • записать противоположное данному число и вычесть 1 ;
  • использовать формулу для остатка d = a − b · c .

Рассмотрим на примере решения, где применяется данный алгоритм.

Найти неполное частное и остаток от деления — 17 на 5 .

Делим заданные числа по модулю. Получаем, что при делении частное равно 3 , а остаток 2 . Так как получили 3 , противоположное — 3 . Необходимо отнять 1 .

Искомое значение полчаем равное — 4 .

Чтобы вычислить остаток, необходимо a = − 17 , b = 5 , c = − 4 , тогда d = a − b · c = − 17 − 5 · ( − 4 ) = − 17 − ( − 20 ) = − 17 + 20 = 3 .

Значит, неполным частным от деления является число — 4 с остатком равным 3 .

Ответ: ( − 17 ) : 5 = − 4 (ост. 3 ).

Разделить целое отрицательное число — 1404 на положительное 26 .

Необходимо произвести деление столбиком и по мудулю.

Мы получили деление модулей чисел без остатка. Это значит, что деление выполняется без остатка, а искомое частное = — 54 .

Ответ: ( − 1 404 ) : 26 = − 54 .

Правило деления с остатком целых отрицательных чисел, примеры

Необходимо сформулировать правило деления с остатком целых отрицательных чисел.

Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b , необходимо произвести вычисления по модулю, после чего прибавить 1 , тогда сможем произвести вычисления по формуле d = a − b · c .

Отсюда следует, что неполное частное от деления целых отрицательных чисел будет число положительное.

Сформулируем данное правило в виде алгоритма:

  • найти модули делимого и делителя;
  • разделить модуль делимого на модуль делителя с получением неполного частного с
  • остатком;
  • прибавление 1 к неполному частному;
  • вычисление остатка, исходя из формулы d = a − b · c .

Данный алгоритм рассмотрим на примере.

Найти неполное частное и остаток при делении — 17 на — 5 .

Для правильности решения применим алгоритм для деления с остатком. Для начала раздели числа по модулю. Отсюда получим, что неполное частное = 3 , а остаток равен 2 . По правилу необходимо сложить неполное частное и 1 . Получим, что 3 + 1 = 4 . Отсюда получим, что неполное частное от деления заданных чисел равно 4 .

Для вычисления остатка мы применим формулу. По условию имеем, что a = − 17 , b = − 5 , c = 4 , тогда, используя формулу, получим d = a − b · c = − 17 − ( − 5 ) · 4 = − 17 − ( − 20 ) = − 17 + 20 = 3 . Искомый ответ, то есть остаток, равен 3 , а неполное частное равно 4 .

Ответ: ( − 17 ) : ( − 5 ) = 4 (ост. 3 ).

Проверка результата деления целых чисел с остатком

После выполнение деления чисел с остатком необходимо выполнять проверку. Данная проверка подразумевает 2 этапа. Вначале идет проверка остатка d на неотрицательность, выполнение условия 0 ≤ d b . При их выполнении разрешено выполнять 2 этап. Если 1 этап не выполнился, значит вычисления произведены с ошибками. Второй этап состоит из того, что равенство a = b · c + d должно быть верным. Иначе в вычисления имеется ошибка.

Рассмотрим на примерах.

Произведено деление — 521 на — 12 . Частное равно 44 , остаток 7 . Выполнить проверку.

Так как остаток – это число положительное, то его величина является меньше, чем модуль делителя. Делитель равен — 12 , значит, его модуль равен 12 . Можно переходить к следующему пункту проверки.

По условию имеем, что a = − 521 , b = − 12 , c = 44 , d = 7 . Отсюда вычислим b · c + d , где b · c + d = − 12 · 44 + 7 = − 528 + 7 = − 521 . Отсюда следует, что равенство верное. Проверка пройдена.

Выполнить проверку деления ( − 17 ) : 5 = − 3 (ост. − 2 ). Верно ли равенство?

Смысл первого этапа заключается в том, что необходимо проверить деление целых чисел с остатком. Отсюда видно, что действие произведено неверно, так как дан остаток, равный — 2 . Остаток не является отрицательным числом.

Имеем, что второе условие выполненное, но недостаточное для данного случая.

Ответ: нет.

Число — 19 разделили на — 3 . Неполное частное равно 7 , а остаток 1 . Проверить, верно ли выполнено данное вычисление.

Дан остаток, равный 1 . Он положительный. По величине меньше модуля делителя, значит, первый этап выполняется. Перейдем ко второму этапу.

Вычислим значение выражения b · c + d . По условию имеем, что b = − 3 , c = 7 , d = 1 , значит, подставив числовые значения, получим b · c + d = − 3 · 7 + 1 = − 21 + 1 = − 20 . Следует, что a = b · c + d равенство не выполняется, так как в условии дано а = — 19 .

Отсюда следует вывод, что деление произведено с ошибкой.

Что такое делимость?

Признаки делимости позволяют просто и быстро определить, возможно ли полностью поделить одно число на другое. А делимость это и есть возможность поделить одно число на друге без остатка.

Читайте также:  Navitel или яндекс навигатор

Признаки делимости

Признаки делимости удобнее изучать, разбив возможные делители на группы. Поступим так же и рассмотрим делимость на каждую из групп в отдельности.

На 2,4,8

Эти числа в рассматриваемом вопросе сгруппированы, так как их признаки очень похожи друг на друга.

  • Число делится на 2 только если является четным.
  • Число делится на 4, если последние две цифры числа делятся на 4 или последние две цифры 00. Например, число 130 не делится на 4, так как 30 не делится на 4. А вот уже число 1400 можно поделить на 4.
  • Число делится на 8, если последние две цифры числа нули или делятся на 8

На 3 и 9

Число делится на 3, если сумма цифр этого числа делится на 3. Рассмотрим число: 804. Оно делится на 3, поскольку сумма цифр 8+0+4=12 – делится на 3.

Число делится на 9, если сумма цифр числа делится на 9. Признак похож на признак делимости на число 3.
Интересно: Если число делится на 9, то оно делится и на 3. При этом, число, которое делится на 3 не всегда делится на 9.

Число делится на 5, если последняя цифра числа равняется 5 или нулю. Это наиболее известный признак делимости, наряду с делимостью на 2.

Чтобы число делилось на 6, оно должно делиться на 2 и 3, так как 2*3=6. Поэтому признак делимости на 6 это объединение признаков деления на 2 и на 3.

То есть: число делится на 6, если оно четное и сумма всех его цифр делится на 3

Самые сложные в восприятии признаки делимости на 7 и на 11. Число делится на 7, если разность сумм четных цифр числа и нечетных цифр чисел делится на 7.

Приведем пример: число 469 делится на 7. Почему? Сумма цифр на нечетных позициях 4+9=13. Сумма чисел на четных позициях 6. Разность получившихся сумм: 13-6=7, а это число делится на 7. Поэтому все число 469 делится на 7

На 10

Число делится на 10 только если последней цифрой числа является 0

По тому же принципу определяют делимость числа на 100, 1000 и так далее. Если у числа два нуля на конце, то оно делится на 100, если три нуля на конце, число делится на 1000 и так далее.

На 11

Число делится на 11 только, если разность сумм четных и нечетных цифр числа делится на 11 или равняется нулю Приведем пример:

Число 2035 делится на 11. Сумма цифр, стоящих на четных позициях: 2+3=5. Сумма нечетных цифр: 0+5=5. Разность полученных выражений:5-5=0, значит число делится на 11.

Нельзя путать понятия четной позиции и четного числа. Цифра это знак, который используется для записи чисел. Число это набор цифр, каждая из которых стоит на своей позиции. В числе 127 всего три цифры. Цифра 1 стоит на первой позиции, цифра 2 на второй и так далее. На четной позиции находится цифра 2. На нечетных позициях цифры 1 и 7.

Чтобы быстрее запомнить все группы можно свести в таблицу признаков делимости чисел.

Признаки

Запомни

Признак делимости на 2

Число делится на 2, если его последняя цифра делится на 2 или является нулём.

Признак делимости на 4

Число делится на 4, если две его последние цифры нули или образуют число, делящееся на 4.

Признак делимости на 8

Число делится на 8, если три последние его цифры нули или образуют число, делящееся на 8.

Признак делимости на 3

Число делится на 3, если сумма всех его цифр делится на 3.

Признак делимости на 6

Число делится на 6, если оно делится одновременно на 2 и на 3.

Признак делимости на 9

Число делится на 9, если сумма всех его цифр делится на 9.

Признак делимости на 5

Число делится на 5, если его последняя цифра 5 или 0.

Признак делимости на 25

Число делится на 25, если его две последние цифры нули или образуют число, которое делится на 25.

Признак делимости на 10,100 и 1000.

10 делятся нацело только те числа, последняя цифра которых нуль.

На 100 делятся нацело только те числа, две последние цифры которых нули.

На 1000 делятся нацело только те числа, три последние цифры нули.

Признак делимости на 11

Число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.

Что мы узнали?

Мы поговорили о признаках делимости. Расписали все существующие признаки по группам. В особо сложных ситуациях привели примеры.

Ссылка на основную публикацию
Adblock detector