Что такое tcp соединение

Что такое tcp соединение

Транспортный уровень

Задача транспортного уровня — это передача данных между различными приложениями, выполняемых на всех узлах сети. После того, как пакет доставляется с помощью IP-протокола на принимающий компьютер, данные должны быть отправлены специальному процессу-получателю. Каждый компьютер может выполнять несколько процессов, кроме того, приложение может иметь несколько точек входа, действуя в качестве адреса назначения для пакетов данных.

Пакеты, приходящие на транспортный уровень операционной системы организованы в множества очередей к точкам входа различных приложений. В терминологии TCP/IP такие точки входа называются портами.

Transmission Control Protocol

Transmission Control Protocol (TCP) (протокол управления передачей) — является обязательным протоколом стандарт TCP/IP, определенный в стандарте RFC 793, "Transmission Control Protocol (TCP)".

TCP — это протокол транспортного уровня, предоставляющий транспортировку (передачу) потока данных, с необходимостью предварительного установления соединения, благодаря чему гарантирует уверенность в целостности получаемых данных, также выполняет повторный запрос данных в случае потери данных или искажения. Помимо этого протокол TCP отслеживает дублирование пакетов и в случае обнаружения — уничтожает дублирующиеся пакеты.

В отличие от протокола UDP гарантирует целостность передаваемых данных и подтверждения отправителя о результатах передачи. Используется при передаче файлов, где потеря одного пакета может привести к искажению всего файла.

TCP обеспечивает свою надежность благодаря следующему:

  • Данные от приложения разбиваются на блоки определенного размера, которые будут отправлены.
  • Когда TCP посылает сегмент, он устанавливает таймер, ожидая, что с удаленного конца придет подтверждение на этот сегмент. Если подтверждение не получено по истечении времени, сегмент передается повторно.
  • Когда TCP принимает данные от удаленной стороны соединения, он отправляет подтверждение. Это подтверждение не отправляется немедленно, а обычно задерживается на доли секунды
  • TCP осуществляет расчет контрольной суммы для своего заголовка и данных. Это контрольная сумма, рассчитываемая на концах соединения, целью которой является выявить любое изменение данных в процессе передачи. Если сегмент прибывает с неверной контрольной суммой, TCP отбрасывает его и подтверждение не генерируется. (Ожидается, что отправитель отработает тайм-аут и осуществит повторную передачу.)
  • Так как TCP сегменты передаются в виде IP датаграмм, а IP датаграммы могут прибывать беспорядочно, также беспорядочно могут прибывать и TCP сегменты. После получения данных TCP может по необходимости изменить их последовательность, в результате приложение получает данные в правильном порядке.
  • Так как IP датаграмма может быть продублирована, принимающий TCP должен отбрасывать продублированные данные.
  • TCP осуществляет контроль потока данных. Каждая сторона TCP соединения имеет определенное пространство буфера. TCP на принимающей стороне позволяет удаленной стороне посылать данные только в том случае, если получатель может поместить их в буфер. Это предотвращает от переполнения буферов медленных хостов быстрыми хостами.

Заголовок TCP

  • Порядковый номер выполняет две задачи:
  • Если установлен флаг SYN, то это начальное значение номера последовательности — ISN (Initial Sequence Number), и первый байт данных, которые будут переданы в следующем пакете, будет иметь номер последовательности, равный ISN + 1.
  • В противном случае, если SYN не установлен, первый байт данных, передаваемый в данном пакете, имеет этот номер последовательности.
  • Номер подтверждения — если установлен флаг ACK, то это поле содержит номер последовательности, ожидаемый получателем в следующий раз. Помечает этот сегмент как подтверждение получения.
  • Длина заголовка — задается словами по 32бита.
  • Размер окна — количество байт, которые готов принять получатель без подтверждения.
  • Контрольная сумма — включает псевдо заголовок, заголовок и данные.
  • Указатель срочности — указывает последний байт срочных данных, на которые надо немедленно реагировать.
  • URG — флаг срочности, включает поле "Указатель срочности", если =0 то поле игнорируется.
  • ACK — флаг подтверждение, включает поле "Номер подтверждения, если =0 то поле игнорируется.
  • PSH — флаг требует выполнения операции push, модуль TCP должен срочно передать пакет программе.
  • RST — флаг прерывания соединения, используется для отказа в соединении
  • SYN — флаг синхронизация порядковых номеров, используется при установлении соединения.
  • FIN — флаг окончание передачи со стороны отправителя
  • Рассмотрим структуру заголовка TCP с помощью сетевого анализатора Wireshark:

    TCP порты

    Так как на одном и том же компьютере могут быть запущены несколько программ, то для доставки TCP-пакета конкретной программе, используется уникальный идентификатор каждой программы или номер порта.

    Номер порта — это условное 16-битное число от 1 до 65535, указывающее, какой программе предназначается пакет.

    TCP порты используют определенный порт программы для доставки данных, передаваемых с помощью протокола управления передачей (TCP). TCP порты являются более сложными и работают иначе, чем порты UDP. В то время как порт UDP работает как одиночная очередь сообщений и как точка входа для UDP-соединения, окончательной точкой входа для всех соединений TCP является уникальное соединение. Каждое соединение TCP однозначно идентифицируется двумя точками входа.

    Каждый отдельный порт сервера TCP может предложить общий доступ к нескольким соединениям, потому что все TCP соединения идентифицируются двумя значениями: IP-адресом и TCP портом (сокет).

    Все номера портов TCP, которые меньше чем 1024 — зарезервированы и зарегистрированы в Internet Assigned Numbers Authority (IANA).

    Номера портов UDP и TCP не пересекаются.

    TCP программы используют зарезервированные или хорошо известные номера портов, как показано на следующем рисунке.

    Установление соединения TCP

    Давайте теперь посмотрим, как устанавливается TCP-соединения. Предположим, что процесс, работающий на одном хосте, хочет установить соединение с другим процессом на другом хосте. Напомним, что хост, который инициирует соединение называется «клиентом», в то время как другой узел называется «сервером».

    Перед началом передачи каких-либо данных, согласно протоколу TCP, стороны должны установить соединение. Соединение устанавливается в три этапа (процесс «трёхкратного рукопожатия» TCP).

    • Запрашивающая сторона (которая, как правило, называется клиент) отправляет SYN сегмент, указывая номер порта сервера, к которому клиент хочет подсоединиться, и исходный номер последовательности клиента (ISN).
    • Сервер отвечает своим сегментом SYN, содержащим исходный номер последовательности сервера. Сервер также подтверждает приход SYN клиента с использованием ACK (ISN + 1). На SYN используется один номер последовательности.
    • Клиент должен подтвердить приход SYN от сервера своим сегментов SYN, содержащий исходный номер последовательности клиента (ISN+1) и с использованием ACK (ISN+1). Бит SYN установлен в 0, так как соединение установлено.

    После установления соединения TCP, эти два хоста могут передавать данные друг другу, так как TCP-соединение является полнодуплексным, они могут передавать данные одновременно.

    По нашему опыту, когда дело доходит до низкоуровневого анализа TCP девять из десяти ИТ специалистов в компаниях среднего и крупного бизнеса чувствуют себя неуверенно. Не могут точно сказать, что такое ретрансмиссии, размер окна и т.д. Большинство материалов в интернете по этой теме больше походят на научные работы. В этой статье мы попытаемся донести с практической точки зрения, что же полезного прячет в себе протокол TCP для того, кто занимается анализом сетевого трафика.

    В каких случаях нам нужен анализ TCP пакетов?

    Как показывает практика, современные системы анализа сетевого трафика имеют большую базу протоколов и готовых шаблонов для программного обеспечения. Это позволяет без труда разбивать транзакции на логические части. К сожалению, далеко не для всех задач бизнеса удаётся найти готовые продукты и в каждой компании обязательно найдётся парочка «самописных» или кастомизированных приложений. Как же анализировать трафик от таких приложений?

    Читайте также:  Виндовс не определяет монитор

    База анализатора трафика не имеет информации, в каком бите содержится код реквеста, какой код соответствует респонсу и т.д. В таких ситуациях приходится прибегать к самым азам сетевой науки – TCP анализу. Давайте рассмотрим, что прячет внутри себя этот протокол.

    По своей сути TCP является протоколом транспортного уровня. Он позволяет осуществить соединение одного сокета (IP-адрес + порт) хоста источника с сокетом хоста назначения. Заголовок IP будет содержать информацию, связанную с IP-адресами, а заголовок TCP — информацию о порте.

    Заголовок TCP

    Заголовки TCP перемещаются по сети для установления, поддержки и завершения TCP-соединений, а также передачи данных.

    Рисунок 1. Заголовок TCP

    В заголовке TCP содержаться следующие поля:

    • Source port (16 бит): порт источника. Порт хоста, от которого исходит запрос.
    • Destination port (16 бит): порт назначения. Порт хоста, куда направляется запрос.
    • Sequence number, SYN (32 бита): порядковый номер. Позволяет контролировать порядок сообщений. Каждая конечная точка (как порт источника, так и порт назначения) будут поддерживать свой уникальный порядковый номер для отправляемых сообщений. При установлении соединения TCP (используется сообщение с установленным флагом SYN) в качестве изначального порядкового номера будет сгенерировано случайное число. Вернее, не совсем случайно сгенерировано, а будет содержать конкретное 32-битное число, то есть в пределах от 0 до 4294967295 (или 2 в 32-ой степени возможных вариантов), которое будет соответствовать времени, прошедшему после перегрузки системы отправителя (из расчета +1 за каждые прошедшие 4 микросекунды), а также увеличенное на 64000 каждый раз при установлении нового соединения. Так как сгенерированное число будет уникальным для периода времени почти в пять часов (если при этом никакие соединения не устанавливались), то такой подход к выбору порядкового номера позволяет избежать случайных коллизий при передаче данных, когда для нескольких пакетов из разных соединений будет совпадать порядковый номер. В дальнейшем, при отправке следующих пакетов, значение порядкового номера будет увеличиваться на +1 для всех пакетов с флагом SYN, пакетов с флагом FIN и для каждого байта отправленных данных. Это позволяет принимающей системе обрабатывать пакеты в правильной последовательности, как они были сформированы при отправлении, а не в том порядке, как они были получены.
    • Acknowledgement number, ACK (32 бита): номер подтверждения. Когда сообщение содержит флаг ACK, то значение в номере подтверждения должно соответствовать следующему порядковому номеру (SYN), которое отправитель сообщения с флагом ACK ожидает получить от передающей системы. Таким образом, отправка одного номера подтверждения способна подтвердить получение всех байтов с информацией, полученных до этого. Более наглядно об использовании порядкового номера и номера подтверждения вы можете посмотреть на этом видео:

    • Data offset (4 бита): длина заголовка, известная также как смещение данных. Содержит размер заголовка TCP, измеряемый в 32-битных сегментах. Минимальный размер заголовка TCP составляет пять 32-битных сегментов (всего 20 байт), а максимальный — пятнадцать 32-битных сегмента (или 60 байт).
    • Reserved (3 бита): зарезервировано. Зарезервировано для будущего использования, пока просто забивается нулями. На данный момент осталось три незадействованных бита, в то время как еще три ранее зарезервированных бита уже используются как флаги.
    • Flags, 9 бит (флаги или управляющие биты):
    • NS (1 бит): одноразовая сумма (Nonce Sum). Используется для улучшения работы механизма явного уведомления о перегрузке (Explicit Congestion Notification, ECN).
    • CWR (1 бит): окно перегрузки уменьшено (Congestion Window Reduced). Данный флаг устанавливается отправителем, чтобы показать, что TCP-фрагмент был получен с установленным полем ECE. Таким образом, это является подтверждением получения пакета данных с флажком ECE от хоста получателя и включением отправителем механизма уменьшения перегрузки (Congestion Control), позволяющим оптимизировать отправку пакетов с данными в перегруженных сетях, избежав серьезных задержек из-за отбрасывания пакетов.
    • ECE (1 бит): ECN-Эхо (ECN-Echo). Выполняет двойственную роль, в зависимости от значения флага SYN. При установленном флаге SYN это указывает на то, что отправитель пакета поддерживает ECN. Если флаг SYN сброшен (SYN=0), а ECE установлен, то это означает, что пакет с установленным флагом CE (Congestion Experienced, Подтвержденная перегрузка) был получен в заголовке IP во время обычной передачи. Таким образом, это служит индикатором перегрузки сети (или предстоящей перегрузки) для TCP-отправителя.
    • URG (1 бит). Устанавливается, если необходимо передать ссылку на поле указателя срочности (Urgent pointer).
    • ACK (1 бит). Устанавливается, когда пакет содержит значение номера подтверждения в поле подтверждения. Все пакеты после стартового пакета SYN будут иметь установленный флаг ACK.
    • PSH (1 бит). Делает этот пакет пакетом PUSH (проталкивания). При нормальном потоке передачи данных система получателя не будет подтверждать получение каждого пакета сразу же после его получения. Вместо этого система получателя в течении некоторого времени будет собирать и хранить полученные данные в буфере, пока не передаст их приложению пользователя. Пакет PUSH инструктирует систему получателя немедленно передать все полученные ранее данные из буфера в приложение пользователя и сразу же отправить сообщение с подтверждением.
    • RST (1 бит): сброс данного соединения. Отправкой пакета RST одна из сторон сообщает о немедленном разрыве соединения. При этом соединение обрывается, а буфер очищается. Самые распространенные причины отправки пакета с установленным флагом RST — ответ на пакет, полученный для закрытого сокета; пользователь сам прервал соединение (например, закрыв браузер, не дожидаясь ответа); соединение не было нормально закрыто, но находится в неактивном состоянии некоторое время.
    • SYN (1 бит). Начинает соединение и синхронизирует порядковые номера. Первый пакет, отправленный с каждой стороны, должен в обязательном порядке иметь установленным этот флаг.
    • FIN (1 бит). Одна из конечных точек отправляет пакет с установленным флагом FIN для другой конечной точки, чтобы сообщить, что все пакеты были отправлены, и соединение пора завершить.
  • Window size (16 бит): размер окна приема. В нем указывается количество байт данных, считая от последнего номера подтверждения, которые готов принять отправитель данного пакета. Другими словами, отправитель данного пакета в этом поле сообщает другой стороне, каким доступным на данный момент размером буфера приема данных он располагает.
  • Checksum (16 бит): контрольная сумма. Используется для проверки на наличие ошибок при передаче и/или приеме отправленного пакета. Рассчитывается с учетом заголовка (все поля заголовка, кроме самой контрольной суммы), полезной нагрузки (неслужебные данные с полезной информацией, которая, собственно, и передается), а также псевдо-заголовка (IP-адрес источника, IP-адрес назначения, номер протокола и длина TCP-сегмента, в которой учитывается как длина полей заголовка, так и длина данных полезной нагрузки). Более детально о расчете контрольной суммы вы можете прочитать здесь (http://www.tcpipguide.com/free/t_TCPChecksumCalculationandtheTCPPseudoHeader-2.htm).
  • Urgent pointer (16 бит): указатель срочности. Если установлен флаг URG, то это означает, что поле указателя срочности содержит численное значение положительного смещения от порядкового номера в сообщении, указывающее на последний байт срочных данных. После получения TCP-сегмента с флагом URG, установленным в значение «1», приемное устройство смотрит на поле указателя срочности и по его значению определяет, какие данные в сегменте являются срочными. Затем эти срочные данные сразу же направляются в приложение пользователя с указанием того, что отправитель пометил данные как срочные. Остальные данные в данном сегменте, как, к слову, и накопившиеся до этого в буфере приема, обрабатываются в нормальном режиме. Этим принцип обработки в сообщении флага URG отличается от обработки флага PSH, при получении которого вся информация из буфера, а не только срочная из сообщения, немедленно передается в приложение пользователя. Более детально об передаче данных в TCP при установленном указателе срочности вы можете узнать здесь (http://www.tcpipguide.com/free/t_TCPPriorityDataTransferUrgentFunction-2.htm).
  • Читайте также:  Bookreader что это за плагин

    Механизм передачи сообщений TCP

    Перед тем, как данные могут быть переданы между двумя узлами, в TCP, в отличие от UDP, предусмотрена стадия установки соединения. Также, после того, как все данные были переданы, наступает стадия завершения соединения. Таким образом, осуществление каждого TCP-соединения можно условно разделить на три фазы:

    Установка соединения осуществляется с помощью, так называемого трехстороннего рукопожатия TCP. Инициатором соединения может выступать любая сторона. Однако чтобы упростить рассмотрения данного вопроса в рамках данной статьи, мы рассмотрим пример, когда клиент инициализирует соединение с сервером.

    Рисунок 2. Трехстороннее рукопожатие TCP

    (Пакет №1). Клиент отправляет пакет с установленным флагом SYN и случайным числом («R1»), включенным в поле порядкового номера (sequence number).

    (Пакет №2). При получении пакета №1 сервер в ответ отправляет пакет с установленным флагом SYN, а также с установленным флагом ACK. Поле порядкового номера будет содержать новое случайное число («R2»), а поле номера подтверждения будет содержать значение порядкового номера клиента, увеличенного на единицу (то есть «R1 + 1»). Таким образом, он будет соответствовать следующему порядковому номеру, который сервер ожидает получить от клиента.

    (Пакет №3). В ответ на пакет SYN от сервера (пакет №2) клиент отправляет пакет с установленным флагом ACK и полем номера подтверждения с числом «R2 + 1». По аналогии, это число будет соответствовать следующему порядковому номеру, который клиент ожидает получить от сервера.

    После инициализации соединения полезная нагрузка будет перемещаться в обоих направлениях TCP-соединения. Все пакеты в обязательном порядке будут содержать установленный флаг ACK. Другие флаги, такие как, например, PSH или URG, могут быть, а могут и не быть установленными.

    При нормальном завершении TCP-соединения в большинстве случаев инициализируется процедура, называемая двухсторонним рукопожатием, в ходе которой каждая сторона закрывает свой конец виртуального канала и освобождает все задействованные ресурсы. Обычно эта фаза начинается с того, что один из задействованных процессов приложения сигнализирует своему уровню TCP, что сеанс связи больше не нужен. Со стороны этого устройства отправляется сообщение с установленным флагом FIN (отметим, что этот пакет не обязательно должен быть пустым, он также может содержать полезную нагрузку), чтобы сообщить другому устройству о своем желании завершить открытое соединение. Затем получение этого сообщения подтверждается (сообщение от отвечающего устройства с установленным флагом ACK, говорящем о получении сообщения FIN). Когда отвечающее устройство готово, оно также отправляет сообщение с установленным флагом FIN, и, после получения в ответ подтверждающего получение сообщения с установленным флагом ACK или ожидания определенного периода времени, предусмотренного для получения ACK, сеанс полностью закрывается. Состояния, через которые проходят два соединенных устройства во время обычного завершения соединения, отличаются, потому что устройство, инициирующее завершение сеанса, ведет себя несколько иначе, чем устройство, которое получает запрос на завершение. В частности, TCP на устройстве, получающем начальный запрос на завершение, должен сразу информировать об этом процесс своего приложения и дождаться от него сигнала о том, что приложение готово к этой процедуре. Инициирующему устройству не нужно это делать, поскольку именно приложение и выступило инициатором. Более подробно завершении TCP-соединения смотрите здесь (http://www.tcpipguide.com/free/t_TCPConnectionTermination-2.htm).

    Рисунок 3. Завершение TCP-соединения

    • Keep-alive или повторное использование соединений

    На уровне TCP нет сообщений типа «keep-alive», и поэтому, даже если сеанс соединения в какой-то момент времени становится неактивным, он все равно будет продолжаться до тех пор, пока не будет отправлен следующий пакет.

    Когда мы отправляем HTTP-запрос по сети, нам сразу нужно создать TCP-соединение. Однако в HTTP 1.0 возможность повторного использования соединения по умолчанию закрыта (если заголовок «keep-alive = close» дополнительно не включен в заголовок HTTP), то есть TCP-соединение автоматически закрывается после получения запроса и отправки ответа. Так как процесс создания TCP-соединения относительно затратный (он требует дополнительных затрат процессорных ресурсов и памяти, а также увеличивает сетевой обмен между сервером и клиентом, что особенно становится актуальным при создании защищенных соединений), то все это увеличивает количество лагов и повышает вероятность перегрузки сети. Поэтому для HTTP 1.1 было решено оставлять TCP-соединение открытым до тех пор, пока одна из сторон не решит прекратить его.

    С другой стороны, если соединения не будут закрываться после того, как клиенты получат все необходимые им данные, задействованные ресурсы сервера для поддержания этих соединений не будут доступны другим клиентам. Поэтому HTTP-серверы, чтобы обеспечить больший контроль над потоком данных, используют временные интервалы (таймауты) для поддержки функциональности «keep-alive» для неактивных соединений (длящихся по умолчанию, в зависимости от архитектуры и конфигурации сервера, не более нескольких десятков секунд, а то и просто нескольких секунд), а также максимальное число отправляемых запросов «keep-alive», прежде чем сеанс без активного соединения будет остановлен. Более подробно о функциональности «keep-alive» вы можете узнать здесь (https://blog.stackpath.com/glossary/keep-alive/).

    Подписывайтесь на рассылку, делитесь статьями в соцсетях и задавайте вопросы в комментариях!

    Протокол управления передачей (TCP) является одним из самых важных протоколов пакета Internet Protocols. Это наиболее широко используемый протокол для передачи данных в сети связи, такой как Интернет.

    • TCP — надежный протокол. То есть, приемник всегда отправляет отправителю положительное или отрицательное подтверждение о пакете данных, так что отправитель всегда имеет яркое представление о том, достигнут ли пакет данных адресату или ему нужно повторно отправить его.
    • TCP гарантирует, что данные достигнут назначенного адресата в том же порядке, в котором он был отправлен.
    • TCP ориентирован на соединение. TCP требует установления соединения между двумя удаленными точками перед отправкой фактических данных.
    • TCP обеспечивает механизм проверки и восстановления ошибок.
    • TCP обеспечивает сквозную связь.
    • TCP обеспечивает контроль потока и качество обслуживания.
    • TCP работает в режиме «точка-точка» Client / Server.
    • TCP обеспечивает полный дуплексный сервер, т. Е. Он может выполнять роли как получателя, так и отправителя.

    Длина заголовка TCP составляет минимум 20 байтов и максимум 60 байт.

    • Source Port (16 бит). Он определяет порт источника процесса приложения на отправляющем устройстве.
    • Destination Port (16 бит) — определяет порт назначения процесса приложения на принимающем устройстве.
    • Sequence Number (32 бита) — порядковый номер байтов данных сегмента в сеансе.
    • Acknowledgement Number (32 бита). Когда установлен флаг ACK, это число содержит следующий порядковый номер ожидаемого байта данных и работает как подтверждение предыдущих полученных данных.
    • Data Offset (4 бита). В этом поле подразумеваются как размер заголовка TCP (32-разрядные слова), так и смещение данных в текущем пакете во всем сегменте TCP.
    • Reserved (3 бита) — зарезервировано для будущего использования, и все по умолчанию устанавливаются в ноль.
    • Флаги (по 1 бит)
    • NS — бит Nonce Sum используется сигнальным процессом Явного сообщения о перегрузке.
    • CWR. Когда хост получает пакет с установленным битом ECE, он устанавливает, что Congestion Windows Reduced подтверждает, что полученная от ЕС.
    • ECE — имеет два значения:
    • Если бит SYN очищен до 0, значит, ECE означает, что пакет IP имеет установленный бит CE (перегрузка).
    • Если бит SYN установлен в 1, ECE означает, что устройство поддерживает ECT.
    Читайте также:  Понижение напряжения с помощью резистора
  • URG — указывает, что поле Urgent Pointer имеет значительные данные и должно обрабатываться.
  • ACK — указывает, что поле «Подтверждение» имеет значение. Если ACK очищен до 0, это означает, что пакет не содержит подтверждения.
  • PSH — если установлено, это запрос на принимающую станцию ​​на данные PUSH (как только это произойдет) в принимающее приложение без его буферизации.
  • RST — флаг сброса. Он используется для отказа от входящего соединения, отклонения сегмента, перезапуска соединения.
  • SYN — этот флаг используется для настройки соединения между хостами.
  • FIN — этот флаг используется для освобождения соединения, и после этого больше не обменивается данными. Поскольку пакеты с символами SYN и FIN имеют порядковые номера, они обрабатываются в правильном порядке.
  • Windows Size — это поле используется для управления потоком между двумя станциями и указывает объем буфера (в байтах), выделенный получателем для сегмента, т. Е. Сколько данных ожидает приемник.
  • Checksum — это поле содержит контрольную сумму заголовков, данных и псевдо-заголовков.
  • Urgent Pointer. Он указывает на аварийный байт данных, если флаг URG установлен в 1.
  • Options — обозначает дополнительные опции, которые не покрываются обычным заголовком. Поле опций всегда описывается в 32-битных словах. Если это поле содержит данные размером менее 32 бит, для заполнения оставшихся битов используется дополнение, чтобы достичь 32-разрядной границы.
  • Адресация

    Связь TCP между двумя удаленными хостами выполняется с помощью номеров портов (TSAP). Номера портов могут варьироваться от 0 до 65535, которые делятся как:

    • Порты системы (0 — 1023)
    • Порты пользователей (1024 — 49151)
    • Частные / динамические порты (49152 — 65535)

    Управление подключениями

    Связь TCP работает в модели Server / Client. Клиент инициирует соединение, и сервер либо принимает, либо отклоняет его. Для управления подключением используется трехстороннее связывание.

    Установка соединения

    Клиент инициирует соединение и отправляет сегмент с порядковым номером. Сервер подтверждает это со своим собственным порядковым номером и ACK сегмента клиента, который является еще одним номером последовательности клиентов. Клиент после получения ACK своего сегмента отправляет подтверждение ответа сервера.

    Любой из серверов и клиентов может отправлять сегмент TCP с флагом FIN, установленным в 1. Когда принимающая сторона отвечает на это посредством ACKnowlinging FIN, это направление связи TCP закрывается и соединение освобождается.

    Управление полосой пропускания

    TCP использует концепцию размера окна, чтобы удовлетворить потребность в управлении пропускной способностью. Размер окна сообщает отправителю на удаленном конце, количество сегментов байтов данных, которое может получить приемник с этого конца. TCP использует медленную фазу запуска с использованием размера окна 1 и увеличивает размер окна по экспоненте после каждого успешного сообщения.

    Например, клиент использует размер окна 2 и отправляет 2 байта данных. Когда подтверждение этого сегмента получено, размер окна удваивается до 4, а следующий отправленный сегмент отправляется длиной 4 байта данных. Когда получено подтверждение 4-байтового сегмента данных, клиент устанавливает размер окна 8 и т. Д.

    Если упущено подтверждение, то есть данные, потерянные в транзитной сети или полученные NACK, размер окна уменьшается до половины, а медленная начальная фаза начинается снова.

    Контроль ошибок и контроль потока

    TCP использует номера портов, чтобы узнать, какой процесс приложения ему нужен для передачи сегмента данных. Наряду с этим он использует порядковые номера для синхронизации с удаленным хостом. Все сегменты данных отправляются и принимаются с порядковыми номерами. Отправитель знает, какой последний сегмент данных был принят Получателем, когда он получает ACK. Получатель знает о последнем сегменте, отправленном отправителем, ссылаясь на порядковый номер недавно полученного пакета.

    Если порядковый номер недавно полученного сегмента не совпадает с порядковым номером, который ожидал приемник, он отбрасывается и NACK отправляется обратно. Если два сегмента поступают с одинаковым порядковым номером, значение временной метки TCP сравнивается для принятия решения.

    Мультиплексирование

    Способ объединения двух или более потоков данных в один сеанс называется мультиплексированием. Когда клиент TCP инициализирует соединение с сервером, он всегда ссылается на четко определенный номер порта, который указывает на процесс приложения. Сам клиент использует случайный номер порта из частных пулов номеров портов.

    Используя TCP Multiplexing, клиент может взаимодействовать с несколькими различными процессами приложения за один сеанс. Например, клиент запрашивает веб-страницу, которая, в свою очередь, содержит различные типы данных (HTTP, SMTP, FTP и т. Д.), Тайм-аут сеанса TCP увеличивается, и сеанс остается открытым на более длительное время, так что накладные расходы на трехстороннюю рукопожатие могут избегать.

    Это позволяет клиентской системе получать несколько соединений по одному виртуальному соединению. Эти виртуальные соединения не подходят для серверов, если тайм-аут слишком длинный.

    Контроль перегрузок

    Когда большое количество данных подается в систему, которая не способна обрабатывать ее, происходит перегрузка. TCP управляет перегрузкой с помощью механизма Window. TCP устанавливает размер окна, говорящий на другом конце, сколько сегмента данных нужно отправить. TCP может использовать три алгоритма управления перегрузкой:

    • Аддитивное увеличение, мультипликативное уменьшение
    • Медленный старт
    • Время ожидания

    Управление таймером

    TCP использует различные типы таймеров для управления и управления различными задачами:

    Таймер сохранения:

    • Этот таймер используется для проверки целостности и действительности соединения.
    • Когда время ожидания сохраняется, хост отправляет пробник, чтобы проверить, существует ли соединение еще.

    Таймер повторной передачи:

    • Этот таймер поддерживает сеанс передачи данных с сохранением состояния.
    • Если подтверждение отправленных данных не будет получено в течение времени повторной передачи, сегмент данных будет отправлен снова.

    Постоянный таймер:

    • Сеанс TCP может быть приостановлен хостом, отправив Размер окна 0.
    • Чтобы возобновить сеанс, хосту необходимо отправить размер окна с некоторым большим значением.
    • Если этот сегмент никогда не достигнет другого конца, оба конца могут ждать друг друга в течение бесконечного времени.
    • Когда таймер Persist истекает, хост повторно отправляет свой размер окна, чтобы узнать другой конец.
      Persist Timer помогает избежать взаимоблокировок в общении.

    Timed-Wait:

    • После освобождения соединения один из хостов ждет времени с пометкой времени, чтобы полностью завершить соединение.
    • Это делается для того, чтобы убедиться, что другой конец получил подтверждение своего запроса о завершении соединения.
    • Выдержка может быть не более 240 секунд (4 минуты).

    Восстановление после аварий

    TCP — очень надежный протокол. Он предоставляет порядковый номер для каждого байта, отправленного в сегменте. Он обеспечивает механизм обратной связи, т.е. когда хост получает пакет, он привязан к ACK, чтобы ожидал пакет, имеющий следующий порядковый номер (если он не является последним сегментом).

    Когда TCP-сервер прерывает связь в середине и перезапускает его процесс, он отправляет трансляцию TPDU всем своим хостам. Затем хосты могут отправить последний сегмент данных, который никогда не был непризнан и продолжен.

    Ссылка на основную публикацию
    Adblock detector