В детерминированных моделях все факторы, оказывающие влияние на развитие ситуации принятия решения, однозначно определены и их значения известны в момент принятия решения.
Стохастические модели предполагают наличие элемента неопределенности, учитывают возможное вероятностное распределение значений факторов и параметров, определяющих развитие ситуации.
Следует отметить, что детерминированные модели, с одной стороны, являются более упрощенными, поскольку не позволяют достаточно полно учитывать элемент неопределенности. С другой стороны, они позволяют учесть многие дополнительные факторы, зачастую недоступные стохастическим моделям.
Здесь также нередко оказывается справедливой известная закономерность: учитывая одни факторы при моделировании, мы нередко забываем о других. И это естественно. Никакая модель не может учесть абсолютно все факторы.
Но профессионально разработанная модель отличается тем, что позволяет учесть наиболее существенные из них.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9011 — | 7249 —
или читать все.
78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Стохастическая модель описывает ситуацию, когда присутствует неопределенность. Другими словами, процесс характеризуется некоторой степенью случайности. Само прилагательное «стохастический» происходит от греческого слова «угадывать». Поскольку неопределенность является ключевой характеристикой повседневной жизни, то такая модель может описывать все что угодно.
Однако каждый раз, когда мы ее применяем, будет получаться разный результат. Поэтому чаще используются детерминированные модели. Хотя они и не являются максимально приближенными к реальному положению вещей, однако всегда дают одинаковый результат и позволяют облегчить понимание ситуации, упрощают ее, вводя комплекс математических уравнений.
Основные признаки
Стохастическая модель всегда включает одну или несколько случайных величин. Она стремится отразить реальную жизнь во всех ее проявлениях. В отличие от детерминированной модели, стохастическая не имеет цели все упростить и свести к известным величинам. Поэтому неопределенность является ее ключевой характеристикой. Стохастические модели подходят для описания чего угодно, но все они имеют следующие общие признаки:
- Любая стохастическая модель отражает все аспекты проблемы, для изучения которой создана.
- Исход каждого из явлений является неопределенным. Поэтому модель включает вероятности. От точности их расчета зависит правильность общих результатов.
- Эти вероятности можно использовать для прогнозирования или описания самих процессов.
Детерминированные и стохастические модели
Для некоторых жизнь представляется чередой случайных событий, для других – процессов, в которых причина обуславливает следствие. На самом же деле для нее характерна неопределенность, но не всегда и не во всем. Поэтому иногда трудно найти четкие различия между стохастическими и детерминированными моделями. Вероятности являются достаточно субъективным показателем.
Например, рассмотрим ситуацию с подбрасыванием монетки. На первый взгляд кажется, что вероятность того, что выпадет «решка», составляет 50%. Поэтому нужно использовать детерминированную модель. Однако на деле оказывается, что многое зависит от ловкости рук игроков и совершенства балансировки монетки. Это означает, что нужно использовать стохастическую модель. Всегда есть параметры, которые мы не знаем. В реальной жизни причина всегда обуславливает следствие, но существует и некоторая степень неопределенности. Выбор между использованием детерминированной и стохастической моделей зависит от того, чем мы готовы поступиться – простотой анализа или реалистичностью.
В теории хаоса
В последнее время понятие о том, какая модель называется стохастической, стало еще более размытым. Это связано с развитием так называемой теории хаоса. Она описывает детерминированные модели, которые могут давать разные результаты при незначительном изменении исходных параметров. Это похоже на введение в расчет неопределенности. Многие ученые даже допустили, что это уже и есть стохастическая модель.
Лотар Брейер изящно объяснил все с помощью поэтических образов. Он писал: «Горный ручеек, бьющееся сердце, эпидемия оспы, столб восходящего дыма – все это является примером динамического феномена, который, как кажется, иногда характеризуется случайностью. В реальности же такие процессы всегда подчинены определенному порядку, который ученые и инженеры еще только начинают понимать. Это так называемый детерминированный хаос». Новая теория звучит очень правдоподобно, поэтому многие современные ученые являются ее сторонниками. Однако она все еще остается мало разработанной, и ее достаточно сложно применить в статистических расчетах. Поэтому зачастую используются стохастические или детерминированные модели.
Построение
Стохастическая математическая модель начинается с выбора пространства элементарных исходов. Так в статистике называют перечень возможных результатов изучаемого процесса или события. Затем исследователь определяет вероятность каждого из элементарных исходов. Обычно это делается на основе определенной методики.
Однако вероятности все равно являются достаточно субъективным параметром. Затем исследователь определяет, какие события представляются наиболее интересными для решения проблемы. После этого он просто определяет их вероятность.
Пример
Рассмотрим процесс построения самой простой стохастической модели. Предположим, мы кидаем кубик. Если выпадет «шесть» или «один», то наш выигрыш составит десять долларов. Процесс построения стохастической модели в этом случае будет выглядеть следующим образом:
- Определим пространство элементарных исходов. У кубика шесть граней, поэтому могут выпасть «один», «два», «три», «четыре», «пять» и «шесть».
- Вероятность каждого из исходов будет равна 1/6, сколько бы мы ни подбрасывали кубик.
- Теперь нужно определить интересующие нас исходы. Это выпадение грани с цифрой «шесть» или «один».
- Наконец, мы может определить вероятность интересующего нас события. Она составляет 1/3. Мы суммируем вероятности обоих интересующих нас элементарных событий: 1/6 + 1/6 = 2/6 = 1/3.
Концепция и результат
Стохастическое моделирование часто используется в азартных играх. Но незаменимо оно и в экономическом прогнозировании, так как позволяют глубже, чем детерминированные, понять ситуацию. Стохастические модели в экономике часто используются при принятии инвестиционных решений. Они позволяют сделать предположения о рентабельности вложений в определенные активы или их группы.
Моделирование делает финансовое планирование более эффективным. С его помощью инвесторы и трейдеры оптимизируют распределение своих активов. Использование стохастического моделирования всегда имеет преимущества в долгосрочной перспективе. В некоторых отраслях отказ или неумение его применять может даже привести к банкротству предприятия. Это связано с тем, что в реальной жизни новые важные параметры появляются ежедневно, и если их не учитывать, это может иметь катастрофические последствия.
Одной из характерных особенностей функциональной математической модели является наличие или отсутствие среди ее параметров случайных величин. При наличии таких величин ММ называют стохастической, а при их отсутствии – детерминированной (от латинского слова determino – определяю).
Детерминированные математические модели описывают поведение объекта с позиций полной определенности в настоящем и будущем. Примеры таких моделей: формулы физических законов, технологические процессы обработки деталей и т.д.
Далеко не все параметры реальных технических объектов можно характеризовать вполне определенными значениями. Поэтому ММ таких ТО, строго говоря, следует отнести к стохастическим. Например, если изучаемый ТО является изделием массового производства и его внутренние параметры могут принимать случайные значения в пределах допусков, установленных относительно номинальных значений, то и выходные параметры ТО будут случайными величинами. Случайными могут быть и значения внешних параметров при воздействии на ТО таких факторов, как порывы ветра, турбулентные пульсации, сигналы на фоне шума и т.п.
Для анализа стохастических ММ необходимо использовать методы теории вероятностей, случайных процессов и математической статистики. Однако основная трудность их применения обычно связана с тем, что вероятностные характеристики случайных величин (математические ожидания, дисперсии, законы распределения) часто не известны или известны с невысокой точностью, т.е. ММ не удовлетворяет требованию продуктивности ММ. В таких случаях эффективнее использовать ММ, более грубую по сравнению со стохастической, но и более устойчивую по отношению к недостоверности исходных данных, т.е. в большей мере удовлетворяющую требованию робастности.
Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00