Физический смысл тангенса угла наклона

Физический смысл тангенса угла наклона

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Рис. 1. График функции .

Рассмотрим функцию , ее график и дадим физическую интерпретацию.

Построим систему координат и кривую (см. рис.1), где

независимая переменная или аргумент (время),

– зависимая переменная или функция (расстояние),

Зафиксируем момент времени

Рис. 2. Секущая к графику функции .

приращение аргумента – это разность между новым значением аргумента и старым.

Итак, в новый момент времени, расстояние (от дома) — Рассмотрим треугольник

Рис. 3. Приращение функции и приращение аргумента.

Величина .

2. Физический смысл отношения ∆f/∆x

Рассмотрим отношение Из физических соображений ясно, что отношение расстояния ко времени – это средняя скорость

Рис. 4. Физический и геометрический смысл отношения .

С другой стороны отношение катета Пусть

Зафиксируем эту касательную, Если отношение Определение. Производной функции Предел при Для того чтобы найти нужно:

1) Задать приращение 2) Найти разностное соотношение 3) Если отношение Итак, на уроке было рассмотрено понятие производной. Для этого ввели два новых понятия: приращение аргумента и приращение функции. Также были рассмотрены события, когда приращение аргумента и приращение функции конкретные числа, тогда соотношение

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. ЗвавичЛ.И., Шляпочник Л.Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.

8. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

9. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

10. Глейзер Г.И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983

Дополнительные веб-ресурсы

1. Интернет-портал Mathematics.ru (Источник).

2. Портал Естественных Наук (Источник).

3. Интернет-портал Exponenta.ru (Источник).

Сделай дома

№ 39.40 (Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.)

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Тангенс угла наклона касательной прямой

Геометрический смысл производной. На графике функции выбирается абсцисса x и вычисляется соответствующая ордината f(x). В окрестности точкиx выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло-серая линия C5). Расстояние Δx = x — x устремляется к нулю, в результате секущая переходит в касательную(постепенно темнеющие линии C5 — C1). Тангенс угла α наклона этой касательной — и есть производная в точке x.

Основная статья: Касательная прямая

Если функция имеет конечную производную в точке то в окрестности её можно приблизить линейной функцией

Функция называется касательной к в точке Число является угловым коэффициентом илитангенсом угла наклона касательной прямой.

Скорость изменения функции

Пусть — закон прямолинейного движения. Тогда выражает мгновенную скоростьдвижения в момент времени Вторая производная выражает мгновенное ускорение в момент времени

Вообще производная функции в точке выражает скорость изменения функции в точке , то есть скорость протекания процесса, описанного зависимостью

55) Теплоемкость – есть производная теплоты по температуре, т.е. C(t) = Q / (t)

K (t) = l / (t) — коэффициент линейного расширения

ω (t)= φ / (t) — угловая скорость

а (t)= ω / (t) — угловое ускорение

N(t) = A / (t) — мощность

56)Связь между дифференцируемостью и непрерывностью функции.

Докажем теорему, устанавливающую связь между дифференцируемостью и непрерывностью функции.

Теорема 7.1. Если функция y=f(x) дифференцируема в произвольной точке x0, то она непрерывна в этой точке.

Доказательство. Пусть функция y=f(x) дифференцируема в произвольной точке x0, т.е. имеет в этой точке производную (x0). Запишем приращение функции ∆y точке x0:

Читайте также:  Как красиво оформить рабочий стол windows 10

∆y = (x0) ∆ x + ∆ x, где →0 при ∆ x→0 (см. доказательство теоремы 6.1).

Пусть теперь ∆ x→0. Тогда, очевидно, и ∆y→0. Но это и означает, что функция y=f(x) непрерывна в точке x0. Теорема доказана.

Утверждение, обратное этой теореме, неверно: из непрерывности функции в данной точке не вытекает её дифференцируемость в этой точке. Существуют функции, непрерывные в некоторой точке, но не имеющие в этой точке производной. Примером такой функции служит функция

y= =

Эта функция непрерывна в точке x = 0, но не дифференцируема в ней. Действительно, приращение этой функции в точке x = 0 есть

∆y = f(0+∆ x) ─ f(0) = f(∆ x) = ,

= = ,

т.е. в любой сколь угодно малой окрестности значения отношение принимает два различных значения: 1 и ─1. Это означает, что предел не существует, т.е. функция y= не имеет производной в точке x = 0, а, следовательно, график функции не имеет касательной в точке O(0;0) (поскольку угловой коэффициент касательной должен быть равен производной, но производной не существует).

Таблица производных. Гиперболические функции, их свойства и графики. Производные гиперболических и обратных к ним функций.

Последнее изменение этой страницы: 2016-12-14; Нарушение авторского права страницы

Тригонометрия

Наталья Сергеевна Шабрыкина

Углы и их измерение

Пусть даны два совпадающих луча — подвижный и — неподвижный. И пусть луч поворачиваясь в плоскости вокруг точки , совершит некоторый поворот. Такой поворот, при котором луч впервые опять совпадет с лучом , называется полным оборотом.

Пусть луч совершил некоторый поворот, тогда говорят, что он задает угол , соответствующий этому повороту. Другим определением угла является геометрическая фигура, образованная двумя лучами, исходящими из одной точки , которая называется вершиной угла. Луч носит название начала отсчета и обычно направлен горизонтально вправо.

Для измерения углов применяют две меры.

Градусная мера угла

Поворот, равный полного оборота против часовой стрелки задает угол в один градус. Различают также следующие доли градуса: 1 минута = 1’ = 1/60 градуса; 1 секунда = 1’’ = 1/60 минуты = 1/3600 градуса.

Угол, равный 180 о или половине полного оборота называют развернутым, равный 90 о или четверти полного оборота – прямым.

Радианная мера угла

Рассмотрим два луча — подвижный и — неподвижный. Выберем на них точки и , которые в начальный момент времени совпадают. При повороте точка будет описывать окружность радиуса . Повернем подвижный луч так, чтобы точка прошла расстояние, равное радиусу: , тогда луч составит с лучом угол в один радиан.

Если повернуть подвижный луч так, чтобы точка прошла расстояние , тогда луч составит с лучом угол в радиан.

Читайте также:  Стоимость танков второй мировой войны

При совершение полного оборота точка проходит расстояние, равное длине окружности , значит полный оборот соответствует углу радиан.

Из вышесказанного нетрудно установить, что радиан соответствует 180 о . Таким образом, и .

Соответствие между углами и числовым рядом

Радианная мера угла позволяет установить взаимно однозначное соответствие между множеством углов и рядом действительных чисел. Это возможно, поскольку с одной стороны — это число, равное 3,14… с другой стороны это угол, соответствующий 180 о . Таким образом, нетрудно установить взаимооднозначное соответствие между углами от 0 до 360 о и действительными числами от 0 до . Для того, чтобы понять, как поставить в соответствие углы числам, превышающим , следует вспомнить, что совершив полный оборот подвижный луч возвращается в исходное положение, т.е. любым углам, различающимся на или кратное им будет соответствовать одно и то же взаимное положение подвижного или неподвижного лучей. Отрицательные же углы соответствуют повороту подвижного луча против часовой стрелки. Таким образом, любое действительное число представляет собой радианную меру какого-либо угла и наоборот, любому углу можно поставить в соответствие действительное число.

Тригонометрические функции

Определения

Определения тригонометрическим функциям даются с помощью тригонометрической окружности, под которой понимается окружность единичного радиуса с центром в начале координат.

Рассмотрим два радиуса этой окружности: неподвижный (где точка ) и подвижный (где точка ). Пусть подвижный радиус образует с неподвижным угол .

Число, равное ординате конца единичного радиуса, образующего угол с неподвижным радиусом , называется синусом угла : .

Число, равное абсциссе конца единичного радиуса, образующего угол с неподвижным радиусом , называется косинусом угла : .

Таким образом, точка , являющаяся концом подвижного радиуса, образующего угол , имеет координаты .

Тангенсом угла называется отношение синуса этого угла к его косинусу: , , .

Котангенсом угла называется отношение косинуса этого угла к его синусу: , , .

Геометрический смысл тригонометрических функций

Геометрический смысл синуса и косинуса на тригонометрической окружности понятен из определения: это абсцисса и ординат точки пересечения подвижного радиуса, составляющего угол с неподвижным радиусом, и тригонометрической окружности. То есть , .

Рассмотрим теперь геометрический смысл тангенса и котангенса. Треугольники подобен по трем углам ( , ), тогда имеет место отношение . С другой стороны, в , следовательно .

Также подобен по трем углам ( , ), тогда имеет место отношение . С другой стороны, в , следовательно .

С учетом геометрического смысла тангенса и котангенса вводят понятие оси тангенсов и оси котангенсов.

Осями тангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вверх, вторая касается окружности в точке и направлена вниз.

Осями котангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вправо, вторая касается окружности в точке и направлена влево.

Ссылка на основную публикацию
Adblock detector