Как найти абсолютную скорость

Теория, применяемая для решения приведенной ниже задачи, излагается на странице “Сложное движение точки, теорема Кориолиса”.

Условие задачи

Прямоугольная пластина вращается вокруг неподвижной оси по закону φ = 6 t 2 – 3 t 3 . Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. Ось вращения OO 1 лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой BD движется точка M . Задан закон ее относительного движения, т. е. зависимость s = AM = 40( t – 2 t 3 ) – 40 ( s — в сантиметрах, t — в секундах). Расстояние b = 20 см . На рисунке точка M показана в положении, при котором s = AM > 0 (при s 0 точка M находится по другую сторону от точки A ).

Найти абсолютную скорость и абсолютное ускорение точки M в момент времени t 1 = 1 с .

Указания. Эта задача – на сложное движение точки. Для ее решения необходимо воспользоваться теоремами о сложении скоростей и о сложении ускорений (теорема Кориолиса). Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка M на пластине в момент времени t 1 = 1 с , и изобразить точку именно в этом положении (а не в произвольном, показанном на рисунке к задаче).

Решение задачи

Дано: b = 20 см , φ = 6 t 2 – 3 t 3 , s = |AM| = 40( t – 2 t 3 ) – 40 , t 1 = 1 c .

Определение положения точки

Определяем положение точки в момент времени t = t 1 = 1 c .
s = 40( t 1 – 2 t 1 3 ) – 40 = 40(1 – 2·1 3 ) – 40 = –80 см.
Поскольку s 0 , то точка M ближе к точке B, чем к D.
|AM| = |–80| = 80 см.
Делаем рисунок.

Определение абсолютной скорости точки

Согласно теореме о сложении скоростей, абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Определение относительной скорости точки

Определяем относительную скорость . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дифференцируя s по времени t , находим проекцию скорости на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с.
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительной скорости
vот = 200 см/с .
Изображаем вектор на рисунке.

Определение переносной скорости точки

Определяем переносную скорость . Для этого считаем, что точка M жестко связана с пластиной, а пластина совершает заданное движение. То есть пластина вращается вокруг оси OO1. Дифференцируя φ по времени t , находим угловую скорость вращения пластины:
.
В момент времени t = t 1 = 1 с ,
.
Поскольку 0" style="width:48px;height:18px;vertical-align:-10px;background-position: -583px -267px;"> , то вектор угловой скорости направлен в сторону положительного угла поворота φ , то есть от точки O к точке O1. Модуль угловой скорости:
ω = 3 с -1 .
Изображаем вектор угловой скорости пластины на рисунке.

Из точки M опустим перпендикуляр HM на ось OO1.
При переносном движении точка M движется по окружности радиуса |HM| с центром в точке H .
|HM| = |HK| + |KM| = 3 b + |AM| sin 30° = 60 + 80·0,5 = 100 см ;
Переносная скорость:
vпер = ω|HM| = 3·100 = 300 см/с .

Вектор направлен по касательной к окружности в сторону вращения.

Определение абсолютной скорости точки

Определяем абсолютную скорость . Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Проводим оси неподвижной системы координат Oxyz . Ось z направим вдоль оси вращения пластины. Пусть в рассматриваемый момент времени ось x перпендикулярна пластине, ось y лежит в плоскости пластины. Тогда вектор относительной скорости лежит в плоскости yz . Вектор переносной скорости направлен противоположно оси x . Поскольку вектор перпендикулярен вектору , то по теореме Пифагора, модуль абсолютной скорости:
.

Определение абсолютного ускорения точки

Согласно теореме о сложении ускорений (теорема Кориолиса), абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова ускорений:
,
где
– кориолисово ускорение.

Определение относительного ускорения

Определяем относительное ускорение . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дважды дифференцируя s по времени t , находим проекцию ускорения на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с 2 .
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительного ускорения
aот = 480 см/с 2 .
Изображаем вектор на рисунке.

Определение переносного ускорения

Определяем переносное ускорение . При переносном движении точка M жестко связана с пластиной, то есть движется по окружности радиуса |HM| с центром в точке H . Разложим переносное ускорение на касательное к окружности и нормальное ускорения:
.
Дважды дифференцируя φ по времени t , находим проекцию углового ускорения пластины на ось OO 1 :
.
В момент времени t = t 1 = 1 с ,
с –2 .
Поскольку , то вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то есть от точки O1 к точке O. Модуль углового ускорения:
ε = 6 с -2 .
Изображаем вектор углового ускорения пластины на рисунке.

Переносное касательное ускорение:
a τ пер = ε |HM| = 6·100 = 600 см/с 2 .
Вектор направлен по касательной к окружности. Поскольку вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то направлен в сторону, противоположную положительному направлению поворота φ . То есть направлен в сторону оси x .

Переносное нормальное ускорение:
a n пер = ω 2 |HM| = 3 2 ·100 = 900 см/с 2 .
Вектор направлен к центру окружности. То есть в сторону, противоположную оси y .

Определение кориолисова ускорения

Кориолисово (поворотное) ускорение:
.
Вектор угловой скорости направлен вдоль оси z . Вектор относительной скорости направлен вдоль прямой |DB| . Угол между этими векторами равен 150° . По свойству векторного произведения,
.
Направление вектора определяется по правилу буравчика. Если ручку буравчика повернуть из положения в положение , то винт буравчика переместится в направлении, противоположном оси x .

Определение абсолютного ускорения

Абсолютное ускорение:
.
Спроектируем это векторное уравнение на оси xyz системы координат.

;

;

.
Модуль абсолютного ускорения:

.

Абсолютная скорость ;
абсолютное ускорение .

Автор: Олег Одинцов . Опубликовано: 10-01-2016

Задача

Диск радиуса R=0,5 м вращается вокруг оси, лежащей в его плоскости и касающейся диска, с угловой скоростью ω=πt 2 c -1 (рисунок 3.5). По ободу диска движется точка M по закону: ∪OM=πRt 2 /6 м. В момент времени t=2 c определить абсолютные скорость и ускорение точки M.

Решение

Точка M в данном примере совершает сложное движение, которое может быть разложено на два движения: относительное движение — движение точки M по движущемуся диску (именно с ним может быть скреплена подвижная система отсчета) и переносное движение — вращение диска вместе с находящейся на нем точкой.

Поскольку переносное движение по определению это движение той точки диска, в которой находится в данный момент точка M, то сначала необходимо определить положение точки M на диске в момент времени t=2 c:

Расчет скорости

В относительном движении закон движения задан естественным способом, поэтому скорость определяется как производная его дуговой координаты и направлена по касательной к траектории относительного движения в плоскости диска:

Переносное движение в данном случае — вращение вокруг неподвижной оси O2O3, расстояние до которой от точки M равно KM.

По направлению вектора угловой скорости ω определяем, что при вращении вокруг оси O2O3 точка M движется к нам, то есть вектор Ve перпендикулярен плоскости диска и для выбранной системы отсчета Mxyz, скрепленной с диском, направлен по оси Mx.

Абсолютная скорость точки в нашем примере определяется как геометрическая сумма векторов Ve и Vr:

Спроецировав векторную сумму на выбранные оси координат, получим проекции абсолютной скорости на эти оси:

Направление вектора скорости определяют направляющие косинусы, то есть углы, которые вектор скорости составляет с выбранными осями:

Расчет ускорения

В данном примере и переносные и относительные движения точки M — криволинейные, поэтому абсолютное ускорение определяется по формуле:

Составляющие ускорения определяются независимо друг от друга. В переносном движении точка M вращается вокруг оси O2O3 и движется по окружности радиуса h (рисунок 3.7). Нормальное ускорение в этом движении:

Этот вектор направлен от точки M к точке K (к оси вращения).

Касательное ускорение в переносном движении определится по формуле

Знак производной положителен, то есть вращение ускоренное и направления векторов Ve и ae τ совпадают:

В относительном движении точка M движется по окружности радиуса R. Нормальное ускорение:

Этот вектор направлен от точки M к центру окружности — точке O1.

Касательное ускорение в относительном движении:

Производная от относительной скорости получена со знаком плюс, поэтому ae τ совпадает по направлению с Vr.

Вектор кориолисова ускорения должен быть перпендикулярен векторам ωe и Vr (в нашем случае перпендикулярен плоскости чертежа). Если смотреть навстречу вектору ak, то мы должны видеть поворот вектора ωe (мысленно перенесенного в точку) на кратчайший угол до совмещения с вектором Vr, происходящий против хода часовой стрелки. То есть в этом примере вектор ak направлен по оси Mx к нам.

Направление кориолисова ускорения может быть определено и по правилу Жуковского. Проецируем вектор V на плоскость, перпендикулярную вектору ωe (на плоскость Mxy; в данном примере эта проекция совпадает с осью My), и поворачиваем проекцию Vr на 90 o в сторону вращения, то есть вектор ak направлен к нам по оси Mx.

Для определения абсолютного ускорения проецируем векторное равенство (3.6) на оси координат:

Направление вектора ускорения определяется с помощью направляющих косинусов (см. формулы (3.7)):

Диск вращается вокруг оси, перпендикулярной его плоскости и проходящей через точку C, по закону рад (рис. 2.3.1а). Относительно диска по хорде AB движется точка М по закону см.

Определить абсолютную скорость и абсолютное ускорение точки M в момент времени t1 = 7 с, если OC = 45 см.

1. Точка М совершает сложное движение: движется по диску (относительное движение) и вместе с диском (переносное движение).

2. Определим положение точки на хорде в указанный момент времени

и изобразим ее в заданный момент времени (рис. 2.3.1б).

3. По заданному закону относительного движения определим относительные скорость и ускорение точки M

В момент времени t1:

Изобразим оба вектора (рис. 2.3.2).

4. По заданному закону переносного движения и найденному положения точки M определим ее переносные скорость и ускорение. Угловые скорость и ускорение диска определяются равенствами

В заданный момент времени:

Изобразим векторы (рис. 2.3.2) с учетом установленного характера движения диска (диск вращается в сторону противоположную указанному на рисунке направлению отсчета угла j замедленно).

5. Определим ускорение Кориолиса

Для определения направления ускорения Кориолиса можно воспользоваться правилом Жуковского (рис. 2.3.2).

6. Определим абсолютные скорость и ускорение точки M.

По теореме косинусов:

= 52,3 см/с.

(Рассматривая треугольник OCM, получим ).

Ускорение находится по его проекциям на оси координат

= 99,6 см/с 2 ,

= 43,6 см/с 2 .

Оцените статью
Ремонт оргтехники
Добавить комментарий