Как найти абсолютную скорость

Как найти абсолютную скорость

Теория, применяемая для решения приведенной ниже задачи, излагается на странице “Сложное движение точки, теорема Кориолиса”.

Условие задачи

Прямоугольная пластина вращается вокруг неподвижной оси по закону φ = 6 t 2 – 3 t 3 . Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. Ось вращения OO 1 лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой BD движется точка M . Задан закон ее относительного движения, т. е. зависимость s = AM = 40( t – 2 t 3 ) – 40 ( s — в сантиметрах, t — в секундах). Расстояние b = 20 см . На рисунке точка M показана в положении, при котором s = AM > 0 (при s 0 точка M находится по другую сторону от точки A ).

Найти абсолютную скорость и абсолютное ускорение точки M в момент времени t 1 = 1 с .

Указания. Эта задача – на сложное движение точки. Для ее решения необходимо воспользоваться теоремами о сложении скоростей и о сложении ускорений (теорема Кориолиса). Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка M на пластине в момент времени t 1 = 1 с , и изобразить точку именно в этом положении (а не в произвольном, показанном на рисунке к задаче).

Решение задачи

Дано: b = 20 см , φ = 6 t 2 – 3 t 3 , s = |AM| = 40( t – 2 t 3 ) – 40 , t 1 = 1 c .

Определение положения точки

Определяем положение точки в момент времени t = t 1 = 1 c .
s = 40( t 1 – 2 t 1 3 ) – 40 = 40(1 – 2·1 3 ) – 40 = –80 см.
Поскольку s 0 , то точка M ближе к точке B, чем к D.
|AM| = |–80| = 80 см.
Делаем рисунок.

Определение абсолютной скорости точки

Согласно теореме о сложении скоростей, абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Определение относительной скорости точки

Определяем относительную скорость . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дифференцируя s по времени t , находим проекцию скорости на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с.
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительной скорости
vот = 200 см/с .
Изображаем вектор на рисунке.

Определение переносной скорости точки

Определяем переносную скорость . Для этого считаем, что точка M жестко связана с пластиной, а пластина совершает заданное движение. То есть пластина вращается вокруг оси OO1. Дифференцируя φ по времени t , находим угловую скорость вращения пластины:
.
В момент времени t = t 1 = 1 с ,
.
Поскольку 0" style="width:48px;height:18px;vertical-align:-10px;background-position: -583px -267px;"> , то вектор угловой скорости направлен в сторону положительного угла поворота φ , то есть от точки O к точке O1. Модуль угловой скорости:
ω = 3 с -1 .
Изображаем вектор угловой скорости пластины на рисунке.

Читайте также:  Как играть с друзьями в the crew

Из точки M опустим перпендикуляр HM на ось OO1.
При переносном движении точка M движется по окружности радиуса |HM| с центром в точке H .
|HM| = |HK| + |KM| = 3 b + |AM| sin 30° = 60 + 80·0,5 = 100 см ;
Переносная скорость:
vпер = ω|HM| = 3·100 = 300 см/с .

Вектор направлен по касательной к окружности в сторону вращения.

Определение абсолютной скорости точки

Определяем абсолютную скорость . Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Проводим оси неподвижной системы координат Oxyz . Ось z направим вдоль оси вращения пластины. Пусть в рассматриваемый момент времени ось x перпендикулярна пластине, ось y лежит в плоскости пластины. Тогда вектор относительной скорости лежит в плоскости yz . Вектор переносной скорости направлен противоположно оси x . Поскольку вектор перпендикулярен вектору , то по теореме Пифагора, модуль абсолютной скорости:
.

Определение абсолютного ускорения точки

Согласно теореме о сложении ускорений (теорема Кориолиса), абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова ускорений:
,
где
– кориолисово ускорение.

Определение относительного ускорения

Определяем относительное ускорение . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дважды дифференцируя s по времени t , находим проекцию ускорения на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с 2 .
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительного ускорения
aот = 480 см/с 2 .
Изображаем вектор на рисунке.

Определение переносного ускорения

Определяем переносное ускорение . При переносном движении точка M жестко связана с пластиной, то есть движется по окружности радиуса |HM| с центром в точке H . Разложим переносное ускорение на касательное к окружности и нормальное ускорения:
.
Дважды дифференцируя φ по времени t , находим проекцию углового ускорения пластины на ось OO 1 :
.
В момент времени t = t 1 = 1 с ,
с –2 .
Поскольку , то вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то есть от точки O1 к точке O. Модуль углового ускорения:
ε = 6 с -2 .
Изображаем вектор углового ускорения пластины на рисунке.

Переносное касательное ускорение:
a τ пер = ε |HM| = 6·100 = 600 см/с 2 .
Вектор направлен по касательной к окружности. Поскольку вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то направлен в сторону, противоположную положительному направлению поворота φ . То есть направлен в сторону оси x .

Переносное нормальное ускорение:
a n пер = ω 2 |HM| = 3 2 ·100 = 900 см/с 2 .
Вектор направлен к центру окружности. То есть в сторону, противоположную оси y .

Определение кориолисова ускорения

Кориолисово (поворотное) ускорение:
.
Вектор угловой скорости направлен вдоль оси z . Вектор относительной скорости направлен вдоль прямой |DB| . Угол между этими векторами равен 150° . По свойству векторного произведения,
.
Направление вектора определяется по правилу буравчика. Если ручку буравчика повернуть из положения в положение , то винт буравчика переместится в направлении, противоположном оси x .

Читайте также:  Как открыть телефон samsung galaxy

Определение абсолютного ускорения

Абсолютное ускорение:
.
Спроектируем это векторное уравнение на оси xyz системы координат.

;

;

.
Модуль абсолютного ускорения:

.

Абсолютная скорость ;
абсолютное ускорение .

Автор: Олег Одинцов . Опубликовано: 10-01-2016

Задача

Диск радиуса R=0,5 м вращается вокруг оси, лежащей в его плоскости и касающейся диска, с угловой скоростью ω=πt 2 c -1 (рисунок 3.5). По ободу диска движется точка M по закону: ∪OM=πRt 2 /6 м. В момент времени t=2 c определить абсолютные скорость и ускорение точки M.

Решение

Точка M в данном примере совершает сложное движение, которое может быть разложено на два движения: относительное движение — движение точки M по движущемуся диску (именно с ним может быть скреплена подвижная система отсчета) и переносное движение — вращение диска вместе с находящейся на нем точкой.

Поскольку переносное движение по определению это движение той точки диска, в которой находится в данный момент точка M, то сначала необходимо определить положение точки M на диске в момент времени t=2 c:

Расчет скорости

В относительном движении закон движения задан естественным способом, поэтому скорость определяется как производная его дуговой координаты и направлена по касательной к траектории относительного движения в плоскости диска:

Переносное движение в данном случае — вращение вокруг неподвижной оси O2O3, расстояние до которой от точки M равно KM.

По направлению вектора угловой скорости ω определяем, что при вращении вокруг оси O2O3 точка M движется к нам, то есть вектор Ve перпендикулярен плоскости диска и для выбранной системы отсчета Mxyz, скрепленной с диском, направлен по оси Mx.

Абсолютная скорость точки в нашем примере определяется как геометрическая сумма векторов Ve и Vr:

Спроецировав векторную сумму на выбранные оси координат, получим проекции абсолютной скорости на эти оси:

Направление вектора скорости определяют направляющие косинусы, то есть углы, которые вектор скорости составляет с выбранными осями:

Расчет ускорения

В данном примере и переносные и относительные движения точки M — криволинейные, поэтому абсолютное ускорение определяется по формуле:

Составляющие ускорения определяются независимо друг от друга. В переносном движении точка M вращается вокруг оси O2O3 и движется по окружности радиуса h (рисунок 3.7). Нормальное ускорение в этом движении:

Этот вектор направлен от точки M к точке K (к оси вращения).

Касательное ускорение в переносном движении определится по формуле

Читайте также:  Искать объявления на авито по номеру телефона

Знак производной положителен, то есть вращение ускоренное и направления векторов Ve и ae τ совпадают:

В относительном движении точка M движется по окружности радиуса R. Нормальное ускорение:

Этот вектор направлен от точки M к центру окружности — точке O1.

Касательное ускорение в относительном движении:

Производная от относительной скорости получена со знаком плюс, поэтому ae τ совпадает по направлению с Vr.

Вектор кориолисова ускорения должен быть перпендикулярен векторам ωe и Vr (в нашем случае перпендикулярен плоскости чертежа). Если смотреть навстречу вектору ak, то мы должны видеть поворот вектора ωe (мысленно перенесенного в точку) на кратчайший угол до совмещения с вектором Vr, происходящий против хода часовой стрелки. То есть в этом примере вектор ak направлен по оси Mx к нам.

Направление кориолисова ускорения может быть определено и по правилу Жуковского. Проецируем вектор V на плоскость, перпендикулярную вектору ωe (на плоскость Mxy; в данном примере эта проекция совпадает с осью My), и поворачиваем проекцию Vr на 90 o в сторону вращения, то есть вектор ak направлен к нам по оси Mx.

Для определения абсолютного ускорения проецируем векторное равенство (3.6) на оси координат:

Направление вектора ускорения определяется с помощью направляющих косинусов (см. формулы (3.7)):

Диск вращается вокруг оси, перпендикулярной его плоскости и проходящей через точку C, по закону рад (рис. 2.3.1а). Относительно диска по хорде AB движется точка М по закону см.

Определить абсолютную скорость и абсолютное ускорение точки M в момент времени t1 = 7 с, если OC = 45 см.

1. Точка М совершает сложное движение: движется по диску (относительное движение) и вместе с диском (переносное движение).

2. Определим положение точки на хорде в указанный момент времени

и изобразим ее в заданный момент времени (рис. 2.3.1б).

3. По заданному закону относительного движения определим относительные скорость и ускорение точки M

В момент времени t1:

Изобразим оба вектора (рис. 2.3.2).

4. По заданному закону переносного движения и найденному положения точки M определим ее переносные скорость и ускорение. Угловые скорость и ускорение диска определяются равенствами

В заданный момент времени:

Изобразим векторы (рис. 2.3.2) с учетом установленного характера движения диска (диск вращается в сторону противоположную указанному на рисунке направлению отсчета угла j замедленно).

5. Определим ускорение Кориолиса

Для определения направления ускорения Кориолиса можно воспользоваться правилом Жуковского (рис. 2.3.2).

6. Определим абсолютные скорость и ускорение точки M.

По теореме косинусов:

= 52,3 см/с.

(Рассматривая треугольник OCM, получим ).

Ускорение находится по его проекциям на оси координат

= 99,6 см/с 2 ,

= 43,6 см/с 2 .

Ссылка на основную публикацию
Adblock detector