Как найти вершины многоугольника

Как найти вершины многоугольника

Многоугольник – это геометрическая фигура, ограниченная замкнутой ломаной линией, не имеющей самопересечений.

Звенья ломаной называются сторонами многоугольника, а её вершины – вершинами многоугольника.

Углами многоугольника называются внутренние углы, образованные соседними сторонами. Число углов многоугольника равно числу его вершин и сторон.

Многоугольникам даются названия по количеству сторон. Многоугольник с наименьшим количеством сторон называется треугольником, он имеет всего три стороны. Многоугольник с четырьмя сторонами называется четырёхугольником, с пятью – пятиугольником и т. д.

Обозначение многоугольника составляют из букв, стоящих при его вершинах, называя их по порядку (по часовой или против часовой стрелки). Например, говорят или пишут: пятиугольник ABCDE :

В пятиугольнике ABCDE точки A, B, C, D и E – это вершины пятиугольника, а отрезки AB, BC, CD, DE и EA – стороны пятиугольника.

Выпуклые и вогнутые

Многоугольник называется выпуклым, если ни одна из его сторон, продолженная до прямой линии, его не пересекает. В обратном случае многоугольник называется вогнутым:

Периметр

Сумма длин всех сторон многоугольника называется его периметром.

Периметр многоугольника ABCDE равен:

Если у многоугольника равны все стороны и все углы, то его называют правильным. Правильными многоугольниками могут быть только выпуклые многоугольники.

Диагональ

Диагональ многоугольника – это отрезок, соединяющий вершины двух углов, не имеющих общей стороны. Например, отрезок AD является диагональю:

Единственным многоугольником, который не имеет ни одной диагонали, является треугольник, так как в нём нет углов, не имеющих общих сторон.

Если из какой-нибудь вершины многоугольника провести все возможные диагонали, то они разделят многоугольник на треугольники:

Треугольников будет ровно на два меньше, чем сторон:

где t – это количество треугольников, а n – количество сторон.

Разделение многоугольника на треугольники с помощью диагоналей используется для нахождения площади многоугольника, так как чтобы найти площадь какого-нибудь многоугольника, нужно разбить его на треугольники, найти площадь этих треугольников и полученные результаты сложить.

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Многоугольник – это замкнутая линия, которая образовывается, если взять каких-либо точек и соединить их последовательно отрезками.

  • Точки — вершины многоугольника.
  • Отрезки – стороны многоугольника.

При этом смежные стороны (имеющие общую вершину) не должны лежать на одной прямой, а несмежные стороны не должны иметь общих точек (то есть не должны пересекаться).

Читайте также:  Как включить realtek hd на windows 10

Многоугольник с сторонами называют -угольником.

Произвольные многоугольники

Давай-ка нарисуем, какие бывают многоугольники.

А теперь вопрос: какой из этих многоугольников выпадает из ряда?

Посмотри внимательно на второй многоугольник — он по-существу отличается от всех остальных. Чем же? Он не выпуклый. Это конечно математическое название, но с человеческой интуицией не расходится.

Ну вот, а мы будем рассматривать только выпуклые многоугольники, то есть такие, как 1),3),4) и т.п.

Итак, основной факт:

В любом многоугольнике сумма внутренних углов равна , где буква « » означает число углов многоугольника.

Давай сразу к примерам:

Четырехугольник

Пятиугольник

Шестиугольник

Ах да, про треугольник забыли.

Треугольник

А теперь давай все-таки разберемся, откуда же взялась формула . Зачем? Понимаешь, приемчик, который мы сейчас применим, часто оказывается полезным при решении разных задач. Несмотря на то, что теорема о сумме углов многоугольника верна для всякого многоугольника, доказательство красивое и простое только для выпуклых многоугольников. Итак, давай разделим многоугольник на треугольники.

Вот так: из одной точки проведем все диагонали, что можно. Сколько их будет? Считаем:

Всего вершин:
Из вершины можем провести диагонали во все вершины, кроме:

  • Самой вершины
  • Вершины
  • Вершины

Значит всего диагоналей . А на сколько треугольников распался наш многоугольник?

Представь себе: на . Порисуй, посчитай – удостоверься, что треугольников оказывается ровно на один больше.

Итак, у нас ровно треугольника. И сумма углов многоугольника просто равна сумме углов треугольников, на которые мы разбили многоугольник. Чему равна сумма углов треугольника? Помнишь? Конечно .

Ну вот, треугольника, в каждом по , значит:

Сумма углов многоугольника равна

Что же из этого может оказаться полезным? А вот что:

  1. Разделение на треугольники.
  2. Осознание того, что если провести какую-нибудь диагональ, то получится два новых многоугольника, сумма углов которых равна сумме углов большого многоугольника.

Вот смотри, был -угольник:

Его сумма углов . Провели диагональ, скажем :

Получился пятиугольник и семиугольник . Сумма углов равна , а сумма углов равна . А вместе : — все сошлось! Ну и на этом о произвольных многоугольниках – хватит.

Правильные многоугольники

Многоугольник называется правильным, если все его углы и все его стороны равны.

Так, например: квадрат – правильный четырехугольник, а вот прямоугольник – нет, хоть и все углы у него равные, и ромб – нет, хоть и все стороны равны. Нужно непременно, чтобы все углы и все стороны были равны.

Читайте также:  Мастер подстановок в access 2007

Первый вопрос:

А можно ли найти величину одного (а значит и всех) угла правильного многоугольника?

И ответ: можно!

Давай посмотрим на примере.

Пусть есть, скажем, правильный восьмиугольник:

Сумма всех его углов равна . А сколько всего углов? Восемь конечно, и они все одинаковые.

Значит любой угол, скажем можно найти:

Что мы еще должны знать?

Любой правильный многоугольник можно вписать в окружность и вокруг любого правильного многоугольника можно описать окружность.

При этом центры этих окружностей совпадают.

Смотри как это выглядит!

И более того, всегда можно посчитать соотношение между радиусом вписанной и описанной окружностей.

Давай опять на примере восьмиугольника. Посмотри на . В нем

Значит, — и это не только в восьмиугольнике!

Чему же равен в нашем случае ?

Ровно половине , представь себе!

Значит . Смешно? Но так и есть! Поэтому для восьмиугольника .

Может возникнуть еще один вопрос: а можно ли посчитать углы «около» точки ? И тот же ответ: конечно можно! Опять рассмотрим наш восьмиугольник. Вот мы хотим найти (то есть ).

Мы знаем, что в сумма углов равна . Значит:

И так можно все находить не только для восьмиугольника, но и для любого правильного многоугольника.

МНОГОУГОЛЬНИКИ. КОРОТКО О ГЛАВНОМ

Многоугольник – это замкнутая линия, которая образовывается, если взять каких-либо точек и соединить их последовательно отрезками.

  • Точки — вершины многоугольника.
  • Отрезки – стороны многоугольника.

Многоугольник с сторонами называют -угольником .

Например: многоугольник c сторонами называют четырехугольником , многоугольник с сторонами — шестиугольником и так далее по аналогии.

Четырехугольник
Шестиугольник
  • Выпуклый многоугольник — многоугольник лежащий по одну сторону от любой прямой, соединяющей его соседние вершины.

Сумма внутренних углов выпуклого n -угольника равна или , где — внутренний угол многоугольника.

Правильный выпуклый многоугольник — многоугольник все стороны и внутренние углы которого равны.

Внутренний угол правильного -угольника равен .

  • Любой правильный многоугольник можно вписать в окружность и вокруг любого правильного многоугольника можно описать окружность.

Центры вписанной в правильный многоугольник окружности и окружности, описанной около него, совпадают.

Если многоугольник такой, что в него можно вписать окружность, то его площадь выражается формулой: , где .

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Читайте также:  Почему в ворде не могу вставить формулу

Проблема в том, что этого может не хватить…

Для успешной сдачи ОГЭ или ЕГЭ, для перехода в 10-й класс или поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это — не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю.

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте — нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Я рекомендую использовать для этих целей наш учебник "YouClever" (который ты сейчас читаешь) и решебник и программу подготовки "100gia".

Условия их приобретения изложены здесь. Кликните по этой ссылке, приобретите доступ к YouClever и 100gia и начните готовиться прямо сейчас!

И в заключение.

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” — это совершенно разные навыки. Тебе нужны оба.

Ответ

Проверено экспертом

Многоугольник — часть плоскости, ограниченная замкнутой ломаной без самопересечений, любые два соседних звена которой не лежат на одной прямой.

Вершины ломаной называются вершинами многоугольника, стороны ломаной — сторонами многоугольника.

Диагональ многоугольника — отрезок, соединяющий любые две несоседние вершины.

Периметр многоугольника — сумма длин всех его сторон.

Выпуклый многоугольник — это многоугольник, лежащий по одну сторону от любой прямой, содержащей его сторону.

Формула суммы углов выпуклого многоугольника:

180°(n — 2)

Отметим произвольную точку О внутри выпуклого многоугольника и соединим ее с вершинами. Получили n треугольников. Сумма углов одного треугольника равна 180°, а всех треугольников 180°·n.

Угол при вершине О составляет 360°. Отнимем его от суммы углов треугольников и получим сумму углов выпуклого многоугольника:

Ссылка на основную публикацию
Adblock
detector