Вектор можно не только умножать на число, но и перемножать вектора между собой. Такое действие носит название скалярного произведения векторов.
Если сложение или вычитание векторов является, в общем-то, достаточно понятным и логичным действием, которое просто отображается графически, то с пониманием скалярного произведения векторов не всё так просто. Гораздо легче запомнить формулу скалярного умножения двух векторов, благо, она куда проще для запоминания, нежели для понимания.
- скалярное произведение перпендикулярных векторов равно нулю, т.к., cos(90°)=0;
- если хотя бы один из перемножаемых векторов является нулевым, то скалярное произведение также будет равно нулю;
- если ни один из перемножаемых векторов не является нулевым, а скалярное произведение векторов равно нулю, то угол между такими векторами будет прямым;
- если угол между векторами тупой, то скалярное произведение таких векторов будет отрицательным числом;
- если угол между векторами острый, то скалярное произведение таких векторов будет положительным числом;
- произведение вектора на самого себя будет равно квадрату модуля этого вектора.
Все же попробуем разъяснить суть умножения двух векторов.
Начнем с самого простого случая, когда два перемножаемых между собой вектора являются сонаправленными, т. е., угол между такими векторами будет равен 0°.
Таким образом, произведение сонаправленных векторов будет равно произведению их модулей, т.е., умножается длина одного вектора на длину второго вектора.
ВАЖНО : Обратите внимание, что результатом скалярного произведения векторов будет число, а не вектор!
А как быть, если перемножаемые между собой вектора расположены под некоторым углом друг к другу?
В этом случае в дело вступает косинус величины угла, под которым располагаются друг к другу перемножаемые вектора.
Возьмём ещё один частный случай, когда два вектора расположены перпендикулярно друг к другу, т.е. образуют угол в 90°.
Как видим, произведение двух перпендикулярых векторов равно 0.
Почему так происходит?
Нюанс перемножения двух векторов, расположенных друг к другу под некоторым углом, заключается в том, что перемножается модуль первого вектора на модуль проекции на этот вектор второго вектора. В случае перпендикулярности проекция второго вектора на первый будет являться точкой или нулевым вектором, а скалярное произведение вектора на нулевой вектор равно нулю (см. выше).
Возьмём третий возможный случай, когда угол между векторами острый, т.е., лежит в пределах от 0° до 90°.
Как известно, косинус углов в этом диапазоне будет числом положительным — меньше 1, но больше 0. Поэтому, скалярное произведение двух не нулевых векторов, расположенных друг к другу под острым углом, всегда будет числом положительным (не следует забывать, что модуль вектора не может быть числом отрицательным, поскольку это расстояние между двумя точками).
В случае, если угол между перемножаемыми векторами будет тупой, т.е., больше 90°, но меньше 180°, в таком случае произведение таких векторов будет числом отрицательным, поскольку в этом диапазоне косинус колеблется от 0 до -1.
И последний частный возможный случай — перемножаемые вектора являются противопложно направленными, т.е., образуют развернутый угол (180°). В таком случае, поскольку cos(180°)=-1, скалярное произведение противоположно направленных векторов будет равно отрицательному произведению их модулей.
Скалярное произведение векторов, заданных координатами
Формула для вычисления длины вектора а с координатами :
Свойства скалярного произведения векторов:
- переместительный закон: ab = ba;
- распределительный закон: (a+b)c = ac+bc;
- сочетательный закон: (ka)b = k(ab), где k — любое число;
- отрицательный квадрат не нулевого вектора будет положительным числом: а -2 >0.
Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:
Код кнопки:
Политика конфиденциальности Об авторе
Скалярное произведение векторов называют число, равное произведению дин этих векторов на косинус угла между ними.
Обозначение произведения векторов a → и b → имеет вид a → , b → . Преобразуем в формулу:
a → , b → = a → · b → · cos a → , b → ^ . a → и b → обозначают длины векторов, a → , b → ^ — обозначение угла между заданными векторами. Если хоть один вектор нулевой, то есть имеет значение 0, то и результат будет равен нулю, a → , b → = 0
При умножении вектора самого на себя, получим квадрат его дины:
a → , b → = a → · b → · cos a → , a → ^ = a → 2 · cos 0 = a → 2
Скалярное умножение вектора самого на себя называют скалярным квадратом.
Вычисляется по формуле:
a → , b → = a → · b → · cos a → , b → ^ .
Запись a → , b → = a → · b → · cos a → , b → ^ = a → · n p a → b → = b → · n p b → a → показывает, что n p b → a → — это числовая проекция a → на b → , n p a → a → — проекция b → на a → соостветсвенно.
Сформулируем определение произведения для двух векторов:
Скалярное произведение двух векторов a → на b → называют произведение длины вектора a → на проекцию b → на направление a → или произведение длины b → на проекцию a → соответственно.
Скалярное произведение в координатах
Вычисление скалярного произведения можно производить через координаты векторов в заданной плоскости или в пространстве.
Скаларное произведение двух векторов на плоскости, в трехмерном простарнстве называют сумму координат заданных векторов a → и b → .
При вычислении на плоскости скаларного произведения заданных векторов a → = ( a x , a y ) , b → = ( b x , b y ) в декартовой системе используют:
a → , b → = a x · b x + a y · b y ,
для трехмерного пространства применимо выражение:
a → , b → = a x · b x + a y · b y + a z · b z .
Фактически это является третьим определением скалярного произведения.
Для доказательства используем a → , b → = a → · b → · cos a → , b → ^ = a x · b x + a y · b y для векторов a → = ( a x , a y ) , b → = ( b x , b y ) на декартовой системе.
Следует отложить векторы
O A → = a → = a x , a y и O B → = b → = b x , b y .
Тогда длина вектора A B → будет равна A B → = O B → — O A → = b → — a → = ( b x — a x , b y — a y ) .
Рассмотрим треугольник O A B .
A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) верно , исходя из теоремы косинусов.
По условию видно, что O A = a → , O B = b → , A B = b → — a → , ∠ A O B = a → , b → ^ , значит, формулу нахождения угла между векторами запишем иначе
b → — a → 2 = a → 2 + b → 2 — 2 · a → · b → · cos ( a → , b → ^ ) .
Тогда из первого определения следует, что b → — a → 2 = a → 2 + b → 2 — 2 · ( a → , b → ) , значит ( a → , b → ) = 1 2 · ( a → 2 + b → 2 — b → — a → 2 ) .
Применив формулу вычисления длины векторов, получим:
a → , b → = 1 2 · ( ( a 2 x + a y 2 ) 2 + ( b 2 x + b y 2 ) 2 — ( ( b x — a x ) 2 + ( b y — a y ) 2 ) 2 ) = = 1 2 · ( a 2 x + a 2 y + b 2 x + b 2 y — ( b x — a x ) 2 — ( b y — a y ) 2 ) = = a x · b x + a y · b y
( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = = a x · b x + a y · b y + a z · b z
– соответственно для векторов трехмерного пространства.
Скалярное произведение векторов с координатами говорит о том, что скалярный квадрат вектора равен сумме квадратов его координат в пространстве и на плоскости соответственно. a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) и ( a → , a → ) = a x 2 + a y 2 .
Скалярное произведение и его свойства
Существуют свойства скалярного произведения, которые применимы для a → , b → и c → :
- коммутативность ( a → , b → ) = ( b → , a → ) ;
- дистрибутивность ( a → + b → , c → ) = ( a → , c → ) + ( b → , c → ) , ( a → + b → , c → ) = ( a → , b → ) + ( a → , c → ) ;
- сочетательное свойство ( λ · a → , b → ) = λ · ( a → , b → ) , ( a → , λ · b → ) = λ · ( a → , b → ) , λ — любое число;
- скалярный квадрат всегда больше нуля ( a → , a → ) ≥ 0 , где ( a → , a → ) = 0 в том случае, когда a → нулевой.
Пример 1
Свойства объяснимы благодаря определению скалярного произведения на плоскости и свойствам при сложении и умножении действительных чисел.
Доказать свойство коммутативности ( a → , b → ) = ( b → , a → ) . Из определения имеем, что ( a → , b → ) = a y · b y + a y · b y и ( b → , a → ) = b x · a x + b y · a y .
По свойству коммутативности равенства a x · b x = b x · a x и a y · b y = b y · a y верны, значит a x · b x + a y · b y = b x · a x + b y · a y .
Отсюда следует, что ( a → , b → ) = ( b → , a → ) . Что и требовалось доказать.
Дистрибутивность справедлива для любых чисел:
( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b → ) = ( a ( 1 ) → , b → ) + ( a ( 2 ) → , b → ) + . . . + ( a ( n ) → , b → )
и ( a → , b ( 1 ) → + b ( 2 ) → + . . . + b ( n ) → ) = ( a → , b ( 1 ) → ) + ( a → , b ( 2 ) → ) + . . . + ( a → , b → ( n ) ) ,
( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b ( 1 ) → + b ( 2 ) → + . . . + b ( m ) → ) = = ( a ( 1 ) → , b ( 1 ) → ) + ( a ( 1 ) → , b ( 2 ) → ) + . . . + ( a ( 1 ) → , b ( m ) → ) + + ( a ( 2 ) → , b ( 1 ) → ) + ( a ( 2 ) → , b ( 2 ) → ) + . . . + ( a ( 2 ) → , b ( m ) → ) + . . . + + ( a ( n ) → , b ( 1 ) → ) + ( a ( n ) → , b ( 2 ) → ) + . . . + ( a ( n ) → , b ( m ) → )
Скалярное произведение с примерами и решениями
Любая задача такого плана решается с применением свойств и формул, касающихся скалярного произведения:
- ( a → , b → ) = a → · b → · cos ( a → , b → ^ ) ;
- ( a → , b → ) = a → · n p a → b → = b → · n p b → a → ;
- ( a → , b → ) = a x · b x + a y · b y или ( a → , b → ) = a x · b x + a y · b y + a z · b z ;
- ( a → , a → ) = a → 2 .
Рассмотрим некоторые примеры решения.
Длина a → равна 3, длина b → равна 7. Найти скалярное произведение, если угол имеет 60 градусов.
По условию имеем все данные, поэтому вычисляем по формуле:
( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = 3 · 7 · cos 60 ° = 3 · 7 · 1 2 = 21 2
Ответ: ( a → , b → ) = 21 2 .
Заданны векторы a → = ( 1 , — 1 , 2 — 3 ) , b → = ( 0 , 2 , 2 + 3 ) . Чему равно скалярной произведение.
В данном примере рассматривается формула вычисления по координатам, так как они заданы в условии задачи:
( a → , b → ) = a x · b x + a y · b y + a z · b z = = 1 · 0 + ( — 1 ) · 2 + ( 2 + 3 ) · ( 2 + 3 ) = = 0 — 2 + ( 2 — 9 ) = — 9
Ответ: ( a → , b → ) = — 9
Найти скалярное произведение A B → и A C → . На координатной плоскости заданы точки A ( 1 , — 3 ) , B ( 5 , 4 ) , C ( 1 , 1 ) .
Для начала вычисляются координаты векторов, так как по условию даны координаты точек:
A B → = ( 5 — 1 , 4 — ( — 3 ) ) = ( 4 , 7 ) A C → = ( 1 — 1 , 1 — ( — 3 ) ) = ( 0 , 4 )
Подставив в формулу с использованием координат, получим:
( A B → , A C → ) = 4 · 0 + 7 · 4 = 0 + 28 = 28 .
Ответ: ( A B → , A C → ) = 28 .
Заданы векторы a → = 7 · m → + 3 · n → и b → = 5 · m → + 8 · n → , найти их произведение. m → равен 3 и n → равен 2 единицам, они перпендикулярные.
( a → , b → ) = ( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) . Применив свойство дистрибутивности, получим:
( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) = = ( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → )
Выносим коэффициент за знак произведения и получим:
( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → ) = = 7 · 5 · ( m → , m → ) + 7 · 8 · ( m → , n → ) + 3 · 5 · ( n → , m → ) + 3 · 8 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → )
По свойству коммутативности преобразуем:
35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → )
В итоге получим:
( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) .
Теперь применим формулу для скалярного произведения с заданным по условию углом:
( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · m → 2 + 71 · m → · n → · cos ( m → , n → ^ ) + 24 · n → 2 = = 35 · 3 2 + 71 · 3 · 2 · cos π 2 + 24 · 2 2 = 411 .
Ответ: ( a → , b → ) = 411
Если имеется числовая проекция.
Найти скалярное произведение a → и b → . Вектор a → имеет координаты a → = ( 9 , 3 , — 3 ) , проекция b → с координатами ( — 3 , — 1 , 1 ) .
По условию векторы a → и проекция b → противоположно направленные, потому что a → = — 1 3 · n p a → b → → , значит проекция b → соответствует длине n p a → b → → , при чем со знаком «-»:
n p a → b → → = — n p a → b → → = — ( — 3 ) 2 + ( — 1 ) 2 + 1 2 = — 11 ,
Подставив в формулу, получим выражение:
( a → , b → ) = a → · n p a → b → → = 9 2 + 3 2 + ( — 3 ) 2 · ( — 11 ) = — 33 .
Ответ: ( a → , b → ) = — 33 .
Задачи при известном скалярном произведении, где необходимо отыскать длину вектора или числовую проекцию.
Какое значение должна принять λ при заданном скалярном произведении a → = ( 1 , 0 , λ + 1 ) и b → = ( λ , 1 , λ ) будет равным -1.
Из формулы видно, что необходимо найти сумму произведений координат:
( a → , b → ) = 1 · λ + 0 · 1 + ( λ + 1 ) · λ = λ 2 + 2 · λ .
В дано имеем ( a → , b → ) = — 1 .
Чтобы найти λ , вычисляем уравнение:
λ 2 + 2 · λ = — 1 , отсюда λ = — 1 .
Физический смысл скалярного произведения
Механика рассматривает приложение скалярного произведения.
При работе А с постоянной силой F → перемещаемое тело из точки M в N можно найти произведение длин векторов F → и M N → с косинусом угла между ними, значит работа равна произведению векторов силы и перемещения:
Перемещение материальной точки на 3 метра под действием силы равной 5 ньтонов направлено под углом 45 градусов относительно оси. Найти A .
Так как работа – это произведение вектора силы на перемещение, значит, исходя из условия F → = 5 , S → = 3 , ( F → , S → ^ ) = 45 ° , получим A = ( F → , S → ) = F → · S → · cos ( F → , S → ^ ) = 5 · 3 · cos ( 45 ° ) = 15 2 2 .
Ответ: A = 15 2 2 .
Материальная точка, перемещаясь из M ( 2 , — 1 , — 3 ) в N ( 5 , 3 λ — 2 , 4 ) под силой F → = ( 3 , 1 , 2 ) , совершила работа равную 13 Дж. Вычислить длину перемещения.
При заданных координатах вектора M N → имеем M N → = ( 5 — 2 , 3 λ — 2 — ( — 1 ) , 4 — ( — 3 ) ) = ( 3 , 3 λ — 1 , 7 ) .
По формуле нахождения работы с векторами F → = ( 3 , 1 , 2 ) и M N → = ( 3 , 3 λ — 1 , 7 ) получим A = ( F ⇒ , M N → ) = 3 · 3 + 1 · ( 3 λ — 1 ) + 2 · 7 = 22 + 3 λ .
По условию дано, что A = 13 Д ж , значит 22 + 3 λ = 13 . Отсюда следует λ = — 3 , значит и M N → = ( 3 , 3 λ — 1 , 7 ) = ( 3 , — 10 , 7 ) .
Чтобы найти длину перемещения M N → , применим формулу и подставим значения:
Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .
Описание презентации по отдельным слайдам:
Угол между векторами a О
№ 1039 Диагонали квадрата пересекаются в точке О. Найдите углы между векторами. 450 А В С D О 900 900 1800 900 1350 00
Сумма векторов – вектор. Разность векторов – вектор. Произведение вектора на число – вектор. Скалярное произведение векторов – число.
Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними.
№ 1041 Вычислите скалярное произведение векторов и , если ׀ ׀=2, ׀ b ׀=3, а угол межу ними равен: а) 45º; б) 90º; в) 135º. cos( ) a a b = б) 2·3·cos90º = 2·3·0 = 0 в) a a b а)
Скалярное произведение ненулевых векторов положительно тогда и только тогда , когда угол между векторами острый. Скалярное произведение ненулевых векторов отрицательно тогда и только тогда , когда угол между векторами тупой.
Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .
- Прудченко Ирина ВячеславовнаНаписать 521 13.12.2018
Номер материала: ДБ-300878
Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .
- 13.12.2018 115
- 13.12.2018 46
- 13.12.2018 84
- 13.12.2018 55
- 13.12.2018 1120
- 13.12.2018 1124
- 13.12.2018 509
- 12.12.2018 86
Не нашли то что искали?
Вам будут интересны эти курсы:
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.