Назначение сервиса . С помощью онлайн-калькулятора Вы сможете:
- построить вариационный ряд, построить гистограмму и полигон;
- найти показатели вариации (среднюю, моду (в т.ч. и графическим способом), медиану, размах вариации, квартили, децили, квартильный коэффициент дифференциации, коэффициент вариации и другие показатели);
- Решение онлайн
- Видеоинструкция
- Оформление Word
Виды статистических группировок
Пример №1 . По данным таблицы 2 постройте ряды распределения по 40 коммерческим банкам РФ. По полученным рядам распределения определите: прибыль в среднем на один коммерческий банк, кредитные вложения в среднем на один коммерческий банк, модальное и медианное значение прибыли; квартили, децили, размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, коэффициент вариации.
Решение:
В разделе «Вид статистического ряда» выбираем Дискретный ряд . Нажимаем Вставить из Excel . Количество групп: по формуле Стэрджесса
Принципы построения статистических группировок
При использовании персональных компьютеров для обработки статистических данных группировка единиц объекта производится с помощью стандартных процедур.
Одна из таких процедур основана на использовании формулы Стерджесса для определения оптимального числа групп:
Длину частичных интервалов вычисляют как h=(xmax-xmin)/k
Затем подсчитывают числа попаданий наблюдений в эти интервалы, которые принимают за частоты ni. Малочисленные частоты, значения которых меньше 5 (ni Пример №3 . В результате 5%-ной собственно-случайной выборки получено следующее распределение изделий по содержанию влаги. Рассчитайте: 1) средний процент влажности; 2) показатели, характеризующие вариацию влажности.
Решение получено с помощью калькулятора: Пример №1
Построить вариационный ряд. По найденному ряду построить полигон распределения, гистограмму, кумуляту. Определить моду и медиану.
Скачать решение
Пример. По результатам выборочного наблюдения (выборка А приложение):
а) составьте вариационный ряд;
б) вычислите относительные частоты и накопленные относительные частоты;
в) постройте полигон;
г) составьте эмпирическую функцию распределения;
д) постройте график эмпирической функции распределения;
е) вычислите числовые характеристики: среднее арифметическое, дисперсию, среднее квадратическое отклонение. Решение
На основе данных, приведенных в Таблице 4 (Приложение 1) и соответствующих Вашему варианту, выполнить:
- На основе структурной группировки построить вариационный частотный и кумулятивный ряды распределения, используя равные закрытые интервалы, приняв число групп равным 6. Результаты представить в виде таблицы и изобразить графически.
- Проанализировать вариационный ряд распределения, вычислив:
- среднее арифметическое значение признака;
- моду, медиану, 1-ый квартиль, 1-ый и 9-тый дециль;
- среднее квадратичное отклонение;
- коэффициент вариации.
- Сделать выводы.
Требуется: ранжировать ряд, построить интервальный ряд распределения, вычислить среднее значение, колеблемость среднего значения, моду и медиану для ранжированного и интервального рядов.
На основе исходных данных построить дискретный вариационный ряд; представить его в виде статистической таблицы и статистических графиков. 2). На основе исходных данных построить интервальный вариационный ряд с равными интервалами. Число интервалов выбрать самостоятельно и объяснить этот выбор. Представить полученный вариационный ряд в виде статистической таблицы и статистических графиков. Указать виды примененных таблиц и графиков.
С целью определения средней продолжительности обслуживания клиентов в пенсионном фонде, число клиентов которого очень велико, по схеме собственно-случайной бесповторной выборки проведено обследование 100 клиентов. Результаты обследования представлены в таблице. Найти:
а) границы, в которых с вероятностью 0.9946 заключено среднее время обслуживания всех клиентов пенсионного фонда;
б) вероятность того, что доля всех клиентов фонда с продолжительностью обслуживания менее 6 минут отличается от доли таких клиентов в выборке не более чем на 10% (по абсолютной величине);
в) объем повторной выборки, при котором с вероятностью 0.9907 можно утверждать, что доля всех клиентов фонда с продолжительностью обслуживания менее 6 минут отличается от доли таких клиентов в выборке не более чем на 10% (по абсолютной величине).
2. По данным задачи 1, используя X 2 критерий Пирсона, на уровне значимости α = 0,05 проверить гипотезу о том, что случайная величина Х – время обслуживания клиентов – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
Скачать решение
Дана выборка из 100 элементов. Необходимо:
- Построить ранжированный вариационный ряд;
- Найти максимальный и минимальный члены ряда;
- Найти размах вариации и количество оптимальных промежутков для построения интервального ряда. Найти длину промежутка интервального ряда;
- Построить интервальный ряд. Найти частоты попадания элементов выборки в составленные промежутки. Найти средние точки каждого промежутка;
- Построить гистограмму и полигон частот. Сравнить с нормальным распределением (аналитически и графически);
- Построить график эмпирической функции распределения;
- Рассчитать выборочные числовые характеристики: выборочное среднее и центральный выборочный момент;
- Рассчитать приближенные значения среднего квадратического отклонения, асимметрии и эксцесса (пользуясь пакетом анализа MS Excel). Сравнить приближенные расчетные значения с точными (рассчитанные по формулам MS Excel);
- Сравнить выборочные графические характеристики с соответствующими теоретическими.
Скачать решение
Имеются следующие выборочные данные (выборка 10%-ная, механическая) о выпуске продукции и сумме прибыли, млн. руб. По исходным данным:
Задание 13.1.
13.1.1. Постройте статистический ряд распределения предприятий по сумме прибыли, образовав пять групп с равными интервалами. Постройте графики ряда распределения.
13.1.2. Рассчитайте числовые характеристики ряда распределения предприятий по сумме прибыли: среднюю арифметическую, среднее квадратическое отклонение, дисперсию, коэффициент вариации V. Сделайте выводы.
Задание 13.2.
13.2.1. Определите границы, в которых с вероятностью 0.997 заключена сумма прибыли одного предприятия в генеральной совокупности.
13.2.2. Используя x2-критерий Пирсона, при уровне значимости α проверить гипотезу о том, что случайная величина X – сумма прибыли – распределена по нормальному закону.
Задание 13.3.
13.3.1. Определите коэффициенты выборочного уравнения регрессии.
13.3.2. Установите наличие и характер корреляционной связи между стоимостью произведённой продукции (X) и суммой прибыли на одно предприятие (Y). Постройте диаграмму рассеяния и линию регрессии.
13.3.3. Рассчитайте линейный коэффициент корреляции. Используя t-критерий Стьюдента, проверьте значимость коэффициента корреляции. Сделайте вывод о тесноте связи между факторами X и Y, используя шкалу Чеддока.
Методические рекомендации. Задание 13.3 выполняется с помощью этого сервиса.
Скачать решение
Задача. Следующие данные представляют собой затраты времени клиентов на заключение договоров. Построить интервальный вариационный ряд представленных данных, гистограмму, найти несмещенную оценку математического ожидания, смещенную и несмещенную оценку дисперсии.
Пример . По данным таблицы 2:
1) Постройте ряды распределения по 40 коммерческим банкам РФ:
А) по величине прибыли;
Б) по величине кредитных вложений.
2) По полученным рядам распределения определите:
А) прибыль в среднем на один коммерческий банк;
Б) кредитные вложения в среднем на один коммерческий банк;
В) модальное и медианное значение прибыли; квартили, децили;
Г) модальное и медианное значение кредитных вложений.
3) По полученным в п. 1 рядам распределения рассчитайте:
а) размах вариации;
б) среднее линейное отклонение;
в) среднее квадратическое отклонение;
г) коэффициент вариации.
Необходимые расчеты оформите в табличной форме. Результаты проанализируйте. Сделайте выводы.
Постройте графики полученных рядов распределения. Графически определите моду и медиану.
Решение:
Для построения группировка с равными интервалами воспользуемся сервисом Группировка статистических данных.
Кафедра: «Высшая математика»
РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА
Тема: «Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона»
Выполнил:
Содержание
1. Исходные данные . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Построение вариационного ряда . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Построение интервального вариационного ряда . . . . . . . . . . . . . . . . . . . . . 4
4. Построение гистограммы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5. Нахождение числовых характеристик выборки . . . . . . . . . . . . . . . . . . . . . . 6
6. Выдвижение гипотезы о законе распределения генеральной
совокупности Х . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 7
7. Оценка числовых характеристик и параметров закона распределения . . .7
8. Нахождение доверительного интервала для математического ожидания. .7
9. Проверка гипотезы о законе распределения генеральной совокупности
по критерию Пирсона . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Вариант
Исходные данные
Дана выборка из генеральной совокупности случайной величины Х. Данные представлены в таблице 1.
1,0 | 3,0 | 2,0 | 3,0 | 0,0 | 2,0 | 2,0 | 0,0 | 4,0 | 2,0 |
3,0 | 1,0 | 2,0 | 3,0 | 3,0 | 3,0 | 4,0 | 4,0 | 5,0 | 2,0 |
4,0 | 1,0 | 4,0 | 1,0 | 2,0 | 2,0 | 4,0 | 2,0 | 3,0 | 2,0 |
1,0 | 2,0 | 4,0 | 0,0 | 2,0 | 3,0 | 4,0 | 3,0 | 3,0 | 1,0 |
3,0 | 2,0 | 3,0 | 6,0 | 3,0 | 5,0 | 4,0 | 1,0 | 3,0 | 3,0 |
3,0 |
Выборка содержит 51 наблюдаемых значений, поэтому выборка имеет объем n = 51.
Построение вариационного ряда
Операция расположения значений случайной величины по не убыванию называется ранжированием. Последовательность элементов х (1) ≤ х (2) ≤…≤ х ( k ) называется вариационным рядом, элементы которого называют вариантами.
Проранжировав статистические данные, получаем вариационный ряд (таблица 2).
Построение интервального вариационного ряда
Опытные данные объединяем в группы так, чтобы в каждой отдельной группе значения вариант будут одинаковы, и тогда можно определить число, показывающее, сколько раз встречается соответствующая варианта в определенной (соответствующей) группе.
Численность отдельной группы сгруппированного ряда опытных данных называется выборочной частотой соответствующей варианты x ( i ) и обозначается ni; при этом , где n – объем выборки.
Отношение выборочной частоты данной варианты к объему выборки называется относительной выборочной частотой Pi * , т.е. где индекс i – номер варианты.
Т.к. согласно теореме Бернулли имеем, что т.е. выборочная относительная частота сходится по вероятности соответствующей вероятности, тогда из условия:
Интервальным вариационным рядом распределения называется упорядоченная совокупность частичных интервалов значений случайной величины с соответствующими им частотами или относительными частотами.
Для построения интервального вариационного ряда выполняем следующие действия:
1. Находим размах выборки R = xmax – xmin. Имеем R = 6 – 0 = 6.
2. Определяем длину частичного интервала ∆ – шаг разбиения по формуле Стерджеса: где n – объем выборки, К– число частичных интервалов. Т.к. n=51, то
, ∆
1.
3. Определяем начало первого частичного интервала . Выбираем хнач= — 0,5.
После разбиения на частичные интервалы просматриваем ранжированную выборку и определяем, сколько значений признака попало в каждый частичный интервал, включая в него те значения, которые ≥ нижней границы и меньше верхней границы. Строим интервальный вариационный ряд (табл. 3).
Таблица 3
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8953 — | 7622 —
или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
На предыдущем уроке по математической статистике (Занятие 1) мы разобрали дискретный вариационный ряд (Занятие 2), и сейчас на очереди интервальный. Его понятие, графическое представление (гистограмма и эмпирическая функция распределения), а также рациональные методы вычислений, как ручные, так и программные. В том числе будут рассмотрены задачи с достаточно большим количеством (100-200) вариант – что делать в таких случаях, как обработать большой массив данных.
Предпосылкой построения интервального вариационного ряда (ИВР) является тот факт, что исследуемая величина принимает слишком много различных значений. Зачастую ИВР появляется в результате измерения непрерывной характеристики изучаемых объектов. Типично – это время, масса, размеры и другие физические характеристики. Подходящие примеры встретились в первой же статье по матстату, вспоминаем Константина, который замерял время на лабораторной работе и Фёдора, который взвешивал помидоры.
Для изучения интервального вариационного ряда затруднительно либо невозможно применить тот же подход, что и для дискретного ряда. Это связано с тем, что ВСЕ варианты многих ИВР различны. И даже если встречаются совпадающие значения, например, 50 грамм и 50 грамм, то связано это с округлением, ибо полученные значения всё равно отличаются хоть какими-то микрограммами.
Поэтому для исследования ИВР используется другой подход, а именно, определяется интервал, в пределах которого варьируются значения, затем данный интервал делится на частичные интервалы, и по каждому интервалу подсчитываются частоты – количество вариант, которые в него попали.
Разберём всю кухню на конкретной задаче, и чтобы как-то разнообразить физику, я приведу пример с экономическим содержанием, кои десятками предлагают студентам экономических отделений. Деньги, строго говоря, дискретны, но если надо, непрерывны :), и по причине слишком большого разброса цен, для них целесообразно строить интервальный ряд:
По результатам исследования цены некоторого товара в различных торговых точках города, получены следующие данные (в некоторых денежных единицах):
Требуется составить вариационный ряд распределения, построить гистограмму и полигон относительных частот + бонус – эмпирическую функцию распределения.
Такое обывательское исследование проводит каждый из нас, начиная с анализа цены на пакет молока вот это дожил в нескольких магазинах, и заканчивая ценами на недвижимость по гораздо бОльшей выборке. Что называется, не какие-то там унылые сантиметры.
Поэтому представьте свой любимый товар / услугу и наслаждайтесь решением🙂
Очевидно, что перед нами выборочная совокупность объемом наблюдений (таблица 10*3), и вопрос номер один: какой ряд составлять – дискретный или интервальный? Смотрим на таблицу: среди предложенных цен есть одинаковые, но их разброс довольно велик, и поэтому здесь целесообразно провести интервальное разбиение. К тому же цены могут быть округлёнными.
Начнём с экстремальной ситуации, когда у вас под рукой нет Экселя или другого подходящего программного обеспечения. Только ручка, карандаш, тетрадь и калькулятор.
Тактика действий похожа на исследование дискретного вариационного ряда. Сначала окидываем взглядом предложенные числа и определяем примерный интервал, в который вписываются эти значения. «Навскидку» все значения заключены в пределах от 5 до 11. Далее делим этот интервал на удобные подынтервалы, в данном случае напрашиваются промежутки единичной длины. Записываем их на черновик:
Теперь начинаем вычёркивать числа из исходного списка и записывать их в соответствующие колонки нашей импровизированной таблицы:
После этого находим самое маленькое число в левой колонке и самое большое значение – в правой. Тут даже ничего искать не пришлось, честное слово, не нарочно получилось:)
ден. ед. – хорошим тоном считается указывать размерность.
Вычислим размах вариации:
ден. ед. – длина общего интервала, в пределах которого варьируется цена.
Теперь его нужно разбить на частичные интервалы. Сколько интервалов рассмотреть? По умолчанию на этот счёт существует формула Стерджеса:
, где
– десятичный логарифм* от объёма выборки и
– оптимальное количество интервалов, при этом результат округляют до ближайшего левого целого значения.
* есть на любом более или менее приличном калькуляторе
В нашем случае получаем:
интервалов.
Следует отметить, что правило Стерджеса носит рекомендательный, но не обязательный характер. Нередко в условии задачи прямо сказано, на какое количество интервалов нужно проводить разбиение (на 4, 5, 6, 10 и т.д.), и тогда следует придерживаться именно этого указания.
Длины частичных интервалов могут быть различны, но в большинстве случаев использует равноинтервальную группировку:
– длина частичного интервала. В принципе, здесь можно было не округлять и использовать длину 0,96, но удобнее, ясен день, 1.
И коль скоро мы прибавили 0,04, то по 5 частичным интервалам у нас получается «перебор»: . Посему от самой малой варианты
отмеряем влево 0,1 влево (половину «перебора») и к значению 5,7 начинаем прибавлять по
, получая тем самым частичные интервалы. При этом сразу рассчитываем их середины
(например,
) – они требуются почти во всех тематических задачах:
– убеждаемся в том, что самая большая варианта вписалась в последний частичный интервал и отстоит от его правого конца на 0,1.
Далее подсчитываем частоты по каждому интервалу. Для этого в черновой «таблице» обводим значения, попавшие в тот или иной интервал, подсчитываем их количество и вычёркиваем:
Так, значения из 1-го интервала я обвёл овалами (7 штук) и вычеркнул, значения из 2-го интервала – прямоугольниками (11 штук) и вычеркнул и так далее.
Правило: если варианта попадает на «стык» интервалов, то её следует относить в правый интервал. У нас такая варианта встретилась одна: – и её нужно причислить к интервалу
.
В результате получаем интервальный вариационный ряд, при этом обязательно убеждаемся в том, что ничего не потеряно: , и, кроме того, рассчитываем относительные частоты
по каждому интервалу, которые уместно округлить до двух знаков после запятой:
Дело за чертежами. Для ИВР чаще всего требуется построить гистограмму.
Гистограмма относительных частот – это фигура, состоящая из прямоугольников, ширина которых равна длинам частичных интервалов, а высота – соответствующим относительным частотам:
При этом вполне допустимо использовать нестандартную шкалу по оси абсцисс, в данном случае я начал нумерацию с четырёх.
Площадь гистограммы равна единице, и это статистический аналог функции плотности распределения непрерывной случайной величины. Построенный чертёж даёт наглядное и весьма точное представление о распределении цен на ботинки по всей генеральной совокупности. Но это при условии, что выборка представительна.
Вместе с гистограммой нередко требуют построить полигон. Без проблем, полигон относительных частот – это ломаная, соединяющая соседние точки , где
– середины интервалов:
Большим достоинством приведённого решения является тот факт, что многие вычисления здесь устные, а если вы помните, как делить «столбиком», то можно обойтись даже без калькулятора. Вот она где притаилась, смерть Терминатора 🙂 😉
Автоматизируем решение в Экселе:
Как составить ИВР и представить его графически? (Ютуб)
И бонус – эмпирическая функция распределения. Она определяется точно так же, как в дискретном случае:
, где
– количество вариант СТРОГО МЕНЬШИХ, чем «икс», который «пробегает» все значения от «минус» до «плюс» бесконечности.
Но вот построить её для интервального ряда намного проще. Находим накопленные относительные частоты:
И строим кусочно-ломаную линию, с промежуточными точками , где
– правые концы интервалов, а
– относительная частота, которая успела накопиться на всех «пройденных» интервалах:
При этом если
и
если
.
Напоминаю, что данная функция не убывает, принимает значения из промежутка и, кроме того, для ИВР она ещё и непрерывна.
Эмпирическая функция распределения является аналогом функции распределения НСВ и приближает теоретическую функцию , которую теоретически, а иногда и практически можно построить по всей генеральной совокупности.
Помимо перечисленных графиков, вариационные ряды также можно представить с помощью кумуляты и огивы частот либо относительных частот, но в классическом учебном курсе эта дичь редкая, и поэтому о ней буквально пару абзацев:
Кумулята – это ломаная, соединяющая точки:
* либо
– для дискретного вариационного ряда;
либо
– для интервального вариационного ряда.
* – накопленные «обычные» частоты
В последнем случае кумулята относительных частот представляет собой «главный кусок» недавно построенной эмпирической функции распределения.
Огива – это обратная функция по отношению к кумуляте – здесь варианты откладываются по оси ординат, а накопленные частоты либо относительные частоты – по оси абсцисс.
С построением данных линий, думаю, проблем быть не должно, чего не скажешь о другой проблеме. Хорошо, если в вашей задаче всего лишь 20-30-50 вариант, но что делать, если их 100-200 и больше? В моей практике встречались десятки таких задач, и ручной подсчёт здесь уже не торт. Считаю нужным снять небольшое видео:
Как быстро составить ИВР при большом объёме выборки? (Ютуб)
Ну, теперь вы монстры 8-го уровня 🙂
Но не всё так сурово. В большинстве задач вам предложат готовый вариационный ряд, и на счёт молока, то, конечно, была шутка:
Выборочная проверка партии чая, поступившего в торговую сеть, дала следующие результаты:
Требуется построить гистограмму и полигон относительных частот, эмпирическую функцию распределения
Проверяем свои навыки работы в Экселе! (исходные числа и краткая инструкция прилагается) И на всякий случай краткое решение для сверки в конце урока.
Что ещё важного по теме? Время от времени встречаются ИВР с открытыми крайними интервалами, например:
В таких случаях, что убийственно логично, интервалы «закрывают». Обычно поступают так: сначала смотрим на средние интервалы и выясняем длину частичного интервала: км. И для дальнейшего решения можно считать, что крайние интервалы имеют такую же длину: от 140 до 160 и от 200 до 220 км. Тоже логично. Но уже не убийственно:)
Ну вот, пожалуй, и вся практически важная информация по ИВР.
На очереди числовые характеристики вариационных рядов и начнём мы с их центральных характеристик, а именно – Моды, медианы и средней.
До скорых встреч!
Решения и ответы:
Пример 7. Решение: заполним расчётную таблицу
Построим гистограмму и полигон относительных частот:
Построим эмпирическую функцию распределения:
Автор: Емелин Александр
(Переход на главную страницу)
Профессиональная помощь по любому предмету – Zaochnik.com