Тонкостенный цилиндр катится по горизонтальной

Тонкостенный цилиндр катится по горизонтальной

UptoLike

Решебник Трофимова Т.И. (1999) — Задача 1. 150

На однородный сплошной цилиндрический вал радиусом R = 50 см намотана легкая нить, к концу которой прикреплен груз массой m = 6,4 кг. Груз, разматывая нить, опускается с ускорением а = 2 м/с2. Определить: 1) момент инерции J вала; 2) масса m1 вала.

Решебник Трофимова Т.И. (1999) — Задача 1. 149

Полый тонкостенный цилиндр катится вдоль горизонтального участка дороги со скоростью v = 1,5 м/с. Определите путь, который он пройдет в гору за счет кинетической энергии, если уклон горы равен 5 м на каждые 100 м пути.

Решебник Трофимова Т.И. (1999) — Задача 1. 148

С наклонной плоскости, составляющей угол α = 30° с горизонтом, скатывается без скольжения шарик. Пренебрегая трением, определить время движения шарика по наклонной плоскости, если известно, что его центр масс при скатывании понизился на 30 см.

Решебник Трофимова Т.И. (1999) — Задача 1. 147

Колесо радиусом R = 30 см и массой m = 3 кг скатывается без трения по наклонной плоскости длиной l = 5 м и углом наклона α = 25° . Определить момент инерции колеса, если его скорость v в конце движения составляла 4,6 м/с.

Решебник Трофимова Т.И. (1999) — Задача 1. 146

Маховик в виде сплошного диска, момент инерции которого J = 1,5 кг·м2, вращаясь при торможении равнозамедленно, за время t = 1 мин уменьшил частоту своего вращения с n0 = 240 об/мин до n1 = 120 об/мин.

Решебник Трофимова Т.И. (1999) — Задача 1. 145

Частота вращения n0 маховика, момента инерции J которого равен 120 кг·м2, составляет 240 об/мин. После прекращения действия на него вращающего момента маховик под действием сил трения в подшипниках остановился за время t = π мин.

Решебник Трофимова Т.И. (1999) — Задача 1. 144

К ободу однородного сплошного диска радиусом R = 0,5 м приложена постоянная касательная сила F = 100 Н. При вращении диска на него действует сила трения Mтр = 2 Н·м. Определить массу m диска, если известно, что его угловое ускорение ε постоянно и равно 16 рад/с2.

Решебник Трофимова Т.И. (1999) — Задача 1. 143

Сплошной однородный диск скатывается без скольжения с наклонной плоскости, образующей угол α с горизонтом. Определить линейное ускорение α центра диска.

Решебник Трофимова Т.И. (1999) — Задача 1. 142

Маховик в виде сплошного диска, момент инерции которого J = 150 кг·м2, вращается с частотой n = 240 об/мин. Через t = 1 мин после начала действия сил торможения он остановился. Определите: 1) момент M сил торможения; 2) число оборотов маховика от начала торможения до полной остановки.

Читайте также:  Почему звук в телефоне стал тихим

Пример 17. Однородный цилиндр массой и радиусом скатывается без скольжения по наклонной плоскости длиной , составляющей угол с горизонтом (см. рис.). Найти: 1) ускорение поступательного движения центра масс ; 2) величину углового ускорения ; 3) силу трения ; 4) время движения цилиндра по наклонной плоскости; 5) кинетическую энергию цилиндра в конце спуска.

Решение. На цилиндр, совершающий плоское движение, действуют внешние тела: Земля с силой тяжести , наклонная плоскость с силой реакции и силой трения . Заметим, что поскольку в данной задаче цилиндр не проскальзывает, то на него действует сила трения качения.

Выберем систему координат так, как показано на рисунке. Запишем уравнение движения центра масс (4.38) в инерциальной системе отсчета, связанной с поверхностью наклонной плоскости

. (1)

Спроектируем векторное равенство (1) на ось , будем иметь следующее выражение:

(2)

Переходим в неинерциальную систему отсчета, связанную с центром масс цилиндра (точка ); записываем уравнения вращения цилиндра вокруг оси, проходящей через центр масс

,

где – проекции на ось , моментов силы реакции , силы тяжести и силы трения соответственно.

Проекции момента силы реакции и силы тяжести равны нулю, т.к. линии действия этих сил пересекают ось вращения. Проекция момента силы трения равна (см. вставку к рисунку).

Учитывая, что момент инерции относительно оси вращения цилиндра равен и (см. рис.), перепишем последнее соотношение в следующем виде:

. (3)

В данной задаче проскальзывание цилиндра отсутствует, следовательно, точки поверхности цилиндра, соприкасающиеся с поверхностью наклонной плоскости, имеют равную нулю линейную скорость. Это значит, что величина скорости поступательного движения центра масс равна величине скорости вращательного движения этих точек. Следовательно, величина ускорения центра масс равна величине тангенциального ускорения, т.е. . С учетом этого равенства запишем для ускорения центра масс и углового ускорения цилиндра следующее соотношение:

. (4)

Решив систему уравнений (2), (3) и (4), найдем величину ускорения центра масс

. (5)

Величину углового ускорения находим из равенства (4)

.

Из уравнения (3) находим величину вектора силы трения

.

Для определения времени движения цилиндра по наклонной плоскости воспользуемся соотношением . С учетом того, что начальная скорость цилиндра равна нулю, получим выражение для времени движения

.

Кинетическую энергию цилиндра, совершающего плоское движение, определим из соотношения (4.40).Учтем при этом, что и .

. (6)

Скорость центра масс в конце наклонной плоскости найдем из соотношения

. (7)

Из равенства (7) вместо скорости поступательного движения центра масс подставим в выражение (6), получим соотношение для кинетической энергии цилиндра

Читайте также:  Сообщение о том где находится курсор

.

Пример 18*. Однородный диск радиусом раскрутили до угловой скорости и осторожно положили боковой поверхностью на горизонтальную поверхность и предоставили самому себе. Коэффициент трения между цилиндром и плоскостью равен . Найти: 1) время, в течении которого движение цилиндра будет происходить со скольжением; 2) полную работу силы трения.

Решение. Изобразим все силы, с которыми внешние тела действуют на вращающийся диск с начальной угловой скоростью . Направление его вращение показано на рисунке. На диск действуют: Земля с силой тяжести , горизонтальная поверхность с силой реакции и силой трения скольжения .

Если диск, вращающийся с угловой скоростью положить на горизонтальную поверхность, то будет наблюдаться следующий характер движения: под действием силы трения скольжения вращение вокруг оси проходящей через центр масс (точка ), станет равнозамедленным с проскальзыванием, и, кроме того, центр масс цилиндра начнет двигаться равноускоренно с ускорением , направленным так, как показано на рисунке.

Через некоторое время проскальзывание прекратится. В этот момент для точек соприкосновения боковой поверхности цилиндра будет выполняться следующее условие: величина вектора скорости поступательного движения будет равна величине вектора скорости вращательного движения , т.е. .

Если последнее равенство продифференцировать по времени, то получим следующее соотношение

.

Это значит, что в момент прекращения проскальзывания ускорение поступательного движения центра масс равно тангенциальному ускорению точек соприкосновения боковой поверхности цилиндра с горизонтальной поверхностью.

Запишем уравнение поступательного движения центра масс цилиндра

. (1)

Для проекций векторов на оси координат, входящих в равенство (1), получим следующие соотношения:

(2)

Решим систему уравнений (2), учтем при этом, что , получим выражение для ускорения поступательного движения оси вращения

. (3)

Выразим величину скорости поступательного движения центра масс через величину ускорения по формуле, учтем при этом, что начальная скорость поступательного движения равна нулю:

, (4)

где – время проскальзывания цилиндра.

Линии действия силы тяжести и силы реакции проходят через ось вращения, следовательно, моменты этих сил относительно этой оси равны нулю. С учетом этого, запишем уравнения вращения цилиндра вокруг оси, проходящей через центр масс

. (5)

Проекция углового ускорения связана с проекцией угловой скорости следующим соотношением , – время проскальзывании; – проекция угловой скорости в момент окончания проскальзывания.

С учетом того, что, и (см. вставку к рис.), перепишем последнее соотношение в виде .

Последнее соотношение для подставим в равенство (5), получим уравнение

. (6)

Угловая скорость связана со скоростью движения центра масс соотношением

. (7)

С учетом этого выражения равенство (6) примет вид

Читайте также:  Преобразовать текст в hex

Окончательно имеем выражение для времени проскальзывания цилиндра

. (8)

В момент прекращения проскальзывания величина скорости центра масс связана с величиной угловой скорости соотношением .

Выразим величину угловой скорости в момент прекращения проскальзывания с величиной начальной угловой скорости , для этого время проскальзывания из уравнения (8) подставим в равенство (7), получим следующее выражение

. (9)

Для вычисления работы силы трения используем теорему об изменении кинетической энергии. Учтем при этом, что сила тяжести и сила реакции работы не совершают, т.к. направления этих сил перпендикулярны перемещению цилиндра.

Запишем выражение для работы силы трения

, (10)

где , конечное и начальное значения кинетической энергии соответственно.

Выразим величину скорости центра масс диска в момент прекращения проскальзывания через угловую скорость, учтем при этом соотношение (10), получим окончательное равенство для работы силы трения

.

[1]АБСОЛЮТНО ТВЕРДОЕ ТЕЛО– модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом.

[2] Расстояние от линии действия вектора импульса материальной точки до оси ).

[3] Аддитивность (от лат. additio — прибавление) — свойство величин, заключающееся в том, что сумма значений величин, соответствующих частям объекта, равна значению величины, соответствующей целому объекту.

[4] ИНЕРТНОСТЬ (инерция) в механике, свойство тела сохранять состояние равномерного прямолинейного движения или покоя, когда действующие на него силы отсутствуют или взаимно уравновешены.

[5] Задача повышенной сложности

[6] Центральная сила– сила, линия действия которой при любом положении тела проходит через одну и ту же точку, называемую центром силы.

[7] Замкнутая система — это система, на которую внешние силы не действуют.

[8] Плоское движение — это такое движение твердого тела, при котором траектории движения всех его точек лежат в параллельных плоскостях.

*Задача повышенной сложности

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10236 — | 7597 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Пожалуйста, очень срочно нужно

Полый тонкостенный цилиндр катится по горизонтальной поверхности со
скоростью 5 м/с. Определите путь, который он пройдет в гору за счет
кинетической энергии, если уклон горы равен 30°

Ссылка на основную публикацию
Adblock detector