Угол наклона бокового ребра к основанию пирамиды

Угол наклона бокового ребра к основанию пирамиды

Пирамида — многогранник, в основании которого лежит многоугольник, а остальные грани являются треугольниками, которые имеют общую вершину. Пирамида – это частный случай конуса.

Элементы пирамиды.

  • апофема — высота боковой грани правильной пирамиды, которая проведена из ее вершины (кроме того, апофемой является длина перпендикуляра, который опущен из середины правильного многоугольника на 1-ну из его сторон);
  • боковые грани(ASB, BSC, CSD, DSA)— треугольники, которые сходятся в вершине;
  • боковые ребра (AS,BS,CS,DS) — общие стороны боковых граней;
  • вершина пирамиды(т. S) — точка, которая соединяет боковые ребра и которая не лежит в плоскости основания;
  • высота (SO) — отрезок перпендикуляра, который проведен через вершину пирамиды к плоскости ее основания (концами такого отрезка будут вершина пирамиды и основание перпендикуляра);
  • диагональное сечение пирамиды — сечение пирамиды, которое проходит через вершину и диагональ основания;
  • основание(ABCD) — многоугольник, которому не принадлежит вершина пирамиды.

Свойства пирамиды.

1. Когда все боковые ребра имеют одинаковую величину, тогда:

  • около основания пирамиды легко описать окружность, при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • боковые ребра образуют с плоскостью основания одинаковые углы;
  • кроме того, верно и обратное, т.е. когда боковые ребра образуют с плоскостью основания равные углы, либо когда около основания пирамиды можно описать окружность и вершина пирамиды будет проецироваться в центр этой окружности, значит, все боковые ребра пирамиды имеют одинаковую величину.

2. Когда боковые грани имеют угол наклона к плоскости основания одной величины, тогда:

  • около основания пирамиды легко описать окружность, при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • высоты боковых граней имеют равную длину;
  • площадь боковой поверхности равняется ½ произведения периметра основания на высоту боковой грани.

3. Около пирамиды можно описать сферу в том случае, если в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы станет точка пересечения плоскостей, которые проходят через середины ребер пирамиды перпендикулярно им. Из этой теоремы делаем вывод, что как около всякой треугольной, так и около всякой правильной пирамиды можно описать сферу.

4. В пирамиду можно вписать сферу в том случае, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в 1-ной точке (необходимое и достаточное условие). Эта точка станет центром сферы.

5. Конус будет вписанным в пирамиду, когда вершины их совпадут, а основание конуса будет вписанным в основание пирамиды. При этом вписать конус в пирамиду можно лишь в том случае, если апофемы пирамиды имеют равные величины (необходимое и достаточное условие).

6. Конус будет описанным около пирамиды, если их вершины совпадут, а основание конуса будет описано около основания пирамиды. При этом описать конус около пирамиды можно лишь в том случае, если все боковые ребра пирамиды имеют одинаковые величины (необходимое и достаточное условие). Высоты у этих конусов и пирамид одинаковы.

7. Цилиндр будет вписанным в пирамиду, если 1-но его основание совпадет с окружностью, которая вписана в сечение пирамиды плоскостью, параллельной основанию, а второе основание будет принадлежать основанию пирамиды.

Читайте также:  Драйвер для блютуз адаптера buro

8. Цилиндр будет описанным около пирамиды, когда вершина пирамиды будет принадлежать его одному основанию, а второе основание цилиндра будет описано около основания пирамиды. При этом описать цилиндр около пирамиды можно лишь в том случае, если основанием пирамиды служит вписанный многоугольник (необходимое и достаточное условие).

Виды пирамид.

По количеству углов основания пирамиды делят на треугольные, четырехугольные и так далее.

Пирамида будет треугольной, четырехугольной, и так далее, когда основанием пирамиды будет треугольник, четырехугольник и так далее. Треугольная пирамида есть четырехгранник — тетраэдр. Четырехугольная — пятигранник и так далее.

Пирамида – многогранник, основание которого — многоугольник , а остальные грани — треугольники, имеющие общую вершину.

По числу углов основания различают пирамиды треугольные , четырёхугольные и т. д.

Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.

Основание — многоугольник, которому не принадлежит вершина пирамиды.

Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.

Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

боковые ребра образуют с плоскостью основания равные углы

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Верно и обратное.

Виды пирамид

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.

Для правильной пирамиды справедливо:

– боковые ребра правильной пирамиды равны;

– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;

– в любую правильную пирамиду можно вписать сферу;

– около любой правильной пирамиды можно описать сферу;

– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.


Пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды.

Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.

Элементы пирамиды [ править | править код ]

  • апофема — высота боковой грани правильной пирамиды, проведённая из её вершины;
  • боковые грани — треугольники, сходящиеся в вершине;
  • боковые ребра — общие стороны боковых граней;
  • вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания;
  • высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);
  • диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания;
  • основание — многоугольник, которому не принадлежит вершина пирамиды.

Развёртка пирамиды [ править | править код ]

Развёрткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга). Приступая к изучению развёртки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую плёнку. Некоторые из представленных таким образом поверхностей можно путём изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещён с плоскостью без разрывов и склеивания, то такую поверхность называют развёртывающейся, а полученную плоскую фигуру — её развёрткой.

Свойства пирамиды [ править | править код ]

Если все боковые рёбра равны, то:

  • вокруг основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые рёбра образуют с плоскостью основания равные углы;
  • также верно и обратное, то есть если боковые рёбра образуют с плоскостью основания равные углы, или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые рёбра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом, то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Теоремы, связывающие пирамиду с другими геометрическими телами [ править | править код ]

Сфера [ править | править код ]

  • около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие) [5] . Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу;
  • в пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.

Конус [ править | править код ]

  • Конус называется вписанным в пирамиду, если вершины их совпадают, а его основание вписано в основание пирамиды. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой (необходимое и достаточное условие); [6]
  • Конус называется описанным около пирамиды, когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые рёбра пирамиды равны между собой (необходимое и достаточное условие);
  • Высоты у таких конусов и пирамид равны между собой.
Читайте также:  Экшн камера отзывы какая лучше

Цилиндр [ править | править код ]

  • Цилиндр называется вписанным в пирамиду, если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.
  • Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник (необходимое и достаточное условие).

Формулы, связанные с пирамидой [ править | править код ]

  • Объём пирамиды может быть вычислен по формуле:

V = 1 3 S h , <3>>Sh,>где S — площадь основания и h — высота; V = 1 6 V p , <1><6>>V_

,>где V p

>— объём параллелепипеда;

  • Также объём треугольной пирамиды (тетраэдра) может быть вычислен по формуле [7] :

V = 1 6 a 1 a 2 d sin ⁡ φ ,

<1><6>>a_<1>a_<2>dsin varphi ,>где a 1 , a 2 <1>,a_<2>>— скрещивающиеся рёбра , d — расстояние между a 1 <1>>и a 2 >, φ — угол между a 1 <1>>и a 2 >;

  • Боковая поверхность — это сумма площадей боковых граней:

S b = ∑ i S i =sum _^<>S_>

  • Полная поверхность — это сумма площади боковой поверхности и площади основания:

S p = S b + S o =S_

+S_>

  • Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:

S b = 1 2 P a = n 2 b 2 sin ⁡ α = <1><2>>Pa=<2>>b^<2>sin alpha >где a — апофема , P — периметр основания, n — число сторон основания, b — боковое ребро, α — плоский угол при вершине пирамиды.

Особые случаи пирамиды [ править | править код ]

Правильная пирамида [ править | править код ]

Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания. Тогда она обладает такими свойствами:

  • боковые рёбра правильной пирамиды равны;
  • в правильной пирамиде все боковые грани — конгруэнтные равнобедренные треугольники;
  • в любую правильную пирамиду можно как вписать, так и описать вокруг неё сферу;
  • если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна π , а каждый из них соответственно π n >>, где n — количество сторон многоугольника основания [8] ;
  • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Прямоугольная пирамида [ править | править код ]

Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.

Тетраэдр [ править | править код ]

Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие между понятиями «правильная треугольная пирамида» и «правильный тетраэдр». Правильная треугольная пирамида — это пирамида с правильным треугольником в основании (грани же должны быть равнобедренными треугольниками). Правильным тетраэдром является тетраэдр, у которого все грани являются равносторонними треугольниками.

«>

Ссылка на основную публикацию
Adblock detector