Уравнение гармонических колебаний вывод формулы

Уравнение гармонических колебаний вывод формулы

Грузик на пружине и математический маятник являются замкнутыми колебательными системами. В замкнутых системах полная механическая энергия сохраняется.

Выразив кинетическую и потенциальную энергию грузика на пружине или математического маятника через координату – отклонение системы от положения равновесия – и продифференцировав по времени, можно получить дифференциальное уравнение, описывающее обе системы: x ¨ + ω 2 x = 0 ddot+omega^<2>x=0 x ¨ + ω 2 x = 0

Общий вид решения этого уравнения имеет вид x ( t ) = A sin ( ω t + φ 0 ) x(t)=Asin(omega t+varphi_<0>) x ( t ) = A sin ( ω t + φ 0 ​ )

​ для грузика на пружине и ω = g l omega=sqrt<frac> ω = l g ​

​ для математического маятника называется циклической (круговой) частотой колебаний системы. ω = 2 π ν = 2 π T omega=2pi
u=frac<2pi> ω = 2 π ν = T 2 π ​ , ν
u ν – частота колебаний системы, T T T – период колебаний.

Период колебаний грузика на пружине определяется формулой
T = 2 π m k , T=2pisqrt<frac> <,>T = 2 π k m ​

а математического маятника – формулой
T = 2 π l g T=2pisqrt<frac> T = 2 π g l ​

Таким образом, две различные механические системы – грузик на пружине и математический маятник – описываются одним дифференциальным уравнением и совершают колебания по одинаковым законам, общим для любой системы, в которой при отклонении системы от положения равновесия возникает возвращающее усилие, пропорциональное отклонению от положения равновесия.

В положении максимального отклонения от положения равновесия скорость колеблющейся материальной точки и, следовательно, её кинетическая энергия равны нулю. Потенциальная энергия системы в этот момент максимальна.

При прохождении положения равновесия потенциальная энергия системы равна нулю, а скорость и кинетическая энергия максимальны.

Колебательное движение – движение (изменение состояния), обладающее той или иной степенью повторяемости во времени.

Т.е. колебанием можно назвать любой вид движения, при котором через одинаковые промежутки времени повторяются кинематические характеристики движения (координата, скорость, ускорение).

Читайте также:  Canon 1100d технические характеристики

Гармоническими колебаниями называются колебания, кинематические характеристики в которых меняются по закону синуса или косинуса.

Рис. 1. Колебательное движение. Вывод через окружность. Начальные условия

Для визуализации, представим вращательное движение в виде колебательного движения вдоль двух взаимно перпендикулярных осей.

Пусть тело, вращающееся по окружности радиуса A, в начале движения находилось в точке C. Пусть в начале движения радиус-вектор, описывающий выбранную точку, наклонён под углом к оси OX. Определим начальные координаты тела (исходя из проекций радиуса на оси):

Рис. 2. Колебательное движение. Вывод через окружность

Пусть через время тело, вращаясь с угловой скоростью , переместилось в точку D. При этом угол поворота радиус-вектора, относительно начального положения составил (рис. 2).

Определим текущие координаты тела тем же методом:

Учитывая, что при равномерном движении по окружности , получим:

Уравнения (5) и (6) являются законом движения материальной точки при гармонических колебаниях. Причём, одним и тем же законом, так как с тригонометрической точки зрения , тогда из (5):

  • где — новый параметр, характеризующий некое другое начальное положение тела.

Таким образом, уравнения (5) и (6), по сути, являются одинаковыми уравнениями только при разных начальных условиях.

Разберём уравнение (5). Каждый из введённых параметров, имея аналог во вращательном движении, описывается по-другому в колебательном движении:

  • где
  • — текущая координата тела,
  • — амплитуда колебаний (максимальное отклонение тела от положения равновесия)
  • — циклическая частота колебания
  • — время движения
  • — начальная фаза колебания
  • — текущая фаза колебания (всё, что стоит под тригонометрической функцией).

Зная общий вид колебательного движения, можем найти зависимости скорости и ускорения от времени. Для уравнения (5):

Аналогичным образом можно провести рассмотрение уравнения (6).

Проанализируем (5) и (8), исходя из внешнего вида правой части обоих уравнений, можем вывести:

Читайте также:  Интегрированные устройства материнской платы

Уравнение (9) называется основным уравнением гармонических колебаний.

Среди параметров колебаний также присутствуют параметры, знакомые нам по вращательному движению:

  • где
  • — циклическая частота колебаний
  • — период колебаний
  • — частота колебания.

Вывод: для школьных задач почти все колебания являются гармоническими и описываются соотношениями (5), (6). Соответствующие скорость и ускорение частицы рассчитываются исходя из конкретного колебания. Параметры колебания также рассчитываются формульно.

Тестирование онлайн

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия — достигает максимального значения.

Читайте также:  Что спрашивают на собеседовании в яндекс

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

Формулы зависимостей скорости от времени и ускорения от времени можно получить математически, зная зависимость координаты от времени. Аналогично равноускоренному движению, зависимость v(t) — это первая производная x(t). А зависимость a(t) — это вторая производная x(t).

При нахождении производной предполагаем, что переменной (то есть x в математике) является t, остальные физические величины воспринимаем как постоянные.

Ссылка на основную публикацию
Adblock detector