Уравнение намагничивающих сил и токов

Уравнение намагничивающих сил и токов

Предположим, что трансформатор работает в режиме холостого хода (рис.1.15, а), т.е. к зажимам его первичной обмотки подведено напряжение U1, а вторичная обмотка разомкнута (U2=0). Ток I в первичной обмотке при этих условиях называют током холостого хода.

Магнитодвижущая сила (МДС) Iw1, созданная этим током, наводит в магнитопроводе трансформатора основной магнитный поток, максимальное значение которого

(1.18)

где RM магнитное сопротивление магнитопровода.

При замыкании вторичной обмотки на нагрузку ZH (рис. 1.15, б) в ней возникает ток I2. При этом ток в первичной обмотке увеличивается до значения I1.

(1.19)

Этот поток можно определить из (1.9):

(1.20)

Из (1.20) следует, что значение основного магнитного потока Ф практически не зависит от нагрузки трансформатора, так как напряжение U1 неизменно. Однако следует иметь в виду, что это положение является приближенным и относится к случаям нагрузки, не превышающим номинальную. Объясняется это тем, что положение о неизменности потока Ф принято на основании уравнения , которое не учитывает падений напряжения в первичной цепи [сравните с (1.13)].

Принятое положение Ф = const позволяет приравнять выражения (1.18) и (1.19):

Рис. 1.15. Режимы холостого хода (а) и нагрузки (б) в однофазном трансформаторе

и получить уравнение МДС трансформатора:

(1.21)

Преобразуя (1.21), можно МДС первичной обмотки представить в виде суммы двух составляющих:

Составляющая наводит в магнитопроводе трансформатора основной магнитный поток Ф, а составляющая уравновешивает МДС вторичной обмотки .

Воздействие МДС вторичной обмотки трансформатора на основной магнитный поток Ф можно объяснить с помощью правила Ленца. В соответствии с этим правилом наведенная в обмотке ЭДС создает в этой обмотке такой ток, который своим магнитным действием направлен против причины, вызвавшей появление этой ЭДС. Причиной наведения ЭДС Е2 во вторичной обмотке трансформатора является основной магнитный поток Ф, поэтому ток во вторичной обмотке I2 создает МДС , направленную встречно потоку Ф, т. е. находящуюся с ним в противофазе и стремящуюся ослабить этот поток. Если бы обмотка w2 была замкнута накоротко или на чисто индуктивное сопротивление и при этом не обладала активным сопротивлением, то ток отставал бы по фазе от ЭДС на угол Ψ2 = 90° и вся МДС оказывала бы на магнитопровод размагничивающее действие. Но в реальных условиях вторичная обмотка замкнута на сопротивление нагрузки ZH = rн ± jxH, да к тому же она сама обладает активным сопротивлением r2. Поэтому фазовый сдвиг тока от ЭДС отличается от 90° и с основным магнитным потоком Ф взаимодействует не вся МДС , а лишь ее реактивная составляющая.

При активно-индуктивной нагрузке, когда ZH = rн ± jxH и ток нагрузки отстает по фазе от ЭДС вторичной обмотки Е2 на угол Ψ2, МДС своей реактивной (индуктивной) составляющей оказывает на магнитопровод трансформатора размагничивающее действие:

где — реактивная составляющая тока нагрузки.

На рис. 1.16, а представлена векторная диаграмма МДС для случая активно-индуктивной нагрузки трансформатора. На диаграмме вектор ЭДС вторичной обмотки отстает по фазе от вектора основного магнитного потока Фmах на угол 90°, а вектор МДС вторичной обмотки отстает по фазе от ЭДС Е2на угол Ψ2 (рис. 1.16, а). Из выполненных на этой диаграмме построений видно, что реактивная (индуктивная) составляющая МДС вторичной обмотки находится в противофазе с основным магнитным потоком Фmах , т. е. оказывает на магнитопровод трансформатора размагничивающее действие.

Анализируя работу трансформатора, необходимо отметить, что при нагрузке трансформатора в пределах номинального значения основной магнитный поток Ф изменяется весьма незначительно и принятое ранее положение Ф ≈ const вполне допустимо. Происходит это потому, что МДС вторичной обмотки , реактивная составляющая которой оказывает на магнитопровод размагничивающее действие, компенсируется составляющей первичной МДС:

(1.22)

При колебаниях тока нагрузки трансформатора изменяется МДС вторичной обмотки , а это вызывает соответствующие изменения МДС первичной обмотки за счет ее составляющей — . Что же касается составляющей МДС холостого хода , то ее значение остается практически неизменным, достаточным для создания в магнитопроводе трансформатора основного магнитного потока Ф ≈ const.

При активно-емкостной нагрузке трансформатора, когда ZH = rн ± jxн и ток нагрузки опережает по фазе ЭДС на угол Ψ2, реактивная (емкостная) составляющая МДС вторичной обмотки совпадает по фазе с основным магнитным потоком Фmах и подмагничивает магнитопровод трансформатора (рис. 1.16, б). В этом случае, так же как и при активно-индуктивной нагрузке [см. (1.22)], составляющая первичной МДС ( ) компенсирует действие вторичной МДС .

Разделив уравнение МДС (1.21) на число витков w1, получим

(1.23)

где , — ток нагрузки (вторичный ток), приведенный к числу витков первичной обмотки.

Другими словами, это такой ток, который в обмотке с числом витков w1 создает такую же МДС, что и ток I2 во вторичной обмотке w2, т. е.

Преобразовав выражение (1.23), получим уравнение токов трансформатора:

(1.24)

Из этого уравнения следует, что первичный ток I1можно рассматривать как сумму двух составляющих: составляющую I, создающую МДС Iw1, необходимую для наведения в магнитопроводе основного магнитного потока Ф, и составляющую – I’2, которая, создавая МДС – I’2 w1 компенсирует МДС вторичной обмотки I2w2 трансформатора. Такое действие составляющих первичного тока приводит к тому, что любое изменение тока нагрузки I2 сопровождается изменением первичного тока I1 за счет изменения его составляющей – I’2, находящейся в противофазе с током нагрузки I2.

Читайте также:  Как добавить фото на слой в фотошопе

Основной магнитный поток Ф является переменным, а поэтому магнитопровод трансформатора подвержен систематическому перемагничиванию. Вследствие этого в магнитопроводе трансформатора имеют место магнитные потери от гистерезиса и вихревых токов, наводимых переменным магнитным потоком в пластинах электротехнической стали. Мощность магнитных потерь эквивалентна активной составляющей тока х.х. Таким образом, ток х.х. имеет две составляющие: реактивную IОР, представляющую собой намагничивающий ток, и активную IОА, обусловленную магнитными потерями:

(1-25)

Обычно активная составляющая тока х.х. невелика и не превышает 0,10 от IО, поэтому она не оказывает заметного влияния на ток х.х.

Рис. 1.17. Разложение тока х.х. на составляющие

На рис. 1.17 представлена векторная диаграмма, на которой показаны векторы тока х.х. и его составляющих и . Угол δ, на который вектор основного магнитного потока отстает по фазе от тока , называют углом магнитных потерь. Нетрудно заметить, что этот угол увеличивается с ростом активной составляющей тока х.х. , т. е. с ростом магнитных потерь в магнитопроводе трансформатора.

Сила тока х.х. в трансформаторах большой и средней мощности соответственно составляет 2—10% от номинального первичного тока. Поэтому при нагрузке, близкой к номинальной, пренебрегая током IО и преобразуя (1.22), получим

(1.26)

т.е. токи в обмотках трансформатора обратно пропорциональны числам витков этих обмоток: ток больше в обмотке с меньшим числом витков и меньше в обмотке с большим числом витков. Поэтому обмотки НН выполняют проводом большего сечения, чем обмотки ВН, имеющие большее число витков.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10236 — | 7597 — или читать все.

При включении первичной обмотки трансформатора в сеть переменного тока по этой обмотке протекает ток, создающий магнитное поле. Большая часть магнитных линий замыкается по стальному магнитопроводу. Эта часть магнитных линий образует основной магнитный поток Ф, который пронизывает витки как первичной, так и вторичной обмоток. Основной магнитный поток изменяется по синусоидальному закону

Потоки рассеяния Ф1 и Ф2 первичной и вторичной обмоток обычно очень малы по сравнению с основным магнитным потоком, так как магнитные линии потоков рассеяния замыкаются через воздух (или другой изоляционный материал) и встречают на своем пути очень большое магнитное сопротивление, тогда как основной магнитный поток замыкается по стали магнитопровода и встречает, на своем пути относительно малое магнитное сопротивление.

Потоки рассеяния первичной и вторичной обмоток примерно одинаковы и сдвинуты по фазе на угол, близкой к 180°.

Уравнение токов: где Ix – ток холостого хода трансформатора.

Пренебрегая током холостого хода Ix, можно считать, что токи в обмотках трансформатора обратно пропорциональны числу витков этих обмоток:

Опыты холостого хода и короткого замыкания. КПД трансформатора.

Опыт холостого хода используют для определения коэффициента трансформации. При этом обмотку низшего напряжения подключают к устройству (потенциал — регулятор), позволяющему в широких пределах изменять напряжение, подводимое к трансформатору, а обмотку высшего напряжения размыкают.

Из опыта холостого хода трансформатора определяют также зависимости тока холостого хода Ix, потребляемой мощности Рх и коэффициента мощности cosφ от значения подводимого напряжения U1, при разомкнутой вторичной обмотке, то есть при I2 = 0. При снятии характеристик холостого хода подводимое напряжение изменяют в пределах от 0,6 до 1,2 UH таким образом, чтобы получить 6. 7 показаний.

Опыт короткого замыкания проводят по схеме. К обмотке низшего напряжения подводят напряжение, при котором в обмотке высшего напряжения, замкнутой накоротко, протекает номинальный ток. Это напряжение называют напряжением короткого замыкания еk% его значение приводят в паспорте трансформатора в процентах номинального.

Напряжение короткого замыкания — важная характеристика трансформатора. По этой величине делают вывод о возможности параллельной работы трансформаторов, по ней и ее составляющим определяют изменения вторичного напряжения трансформатора при изменении нагрузки. Используя эту величину, находят токи короткого замыкания в условиях эксплуатации.

Трехфазные трансформаторы

Магнитопроводы трехфазных трансформаторов

Трехфазный трансформатор может быть составлен из трех одинаковых однофазных; в этом случае он называется групповым. Первичные обмотки трех однофазных трансформаторов соединяют между собой по одной из трехфазных схем, так же как и вторичные обмотки.

Групповые трехфазные трансформаторы применяют при очень больших мощностях (3×630 ква и выше). Это объясняется тем, что каждый однофазный трансформатор группы меньше по габаритам и массе, чем один трехфазный трансформатор на полную мощность группы. Кроме того, при групповом трансформаторе в качестве резерва достаточно иметь один однофазный трансформатор (треть мощности группы), в то время как при одном трехфазном трансформаторе в резерве приходится устанавливать другой трансформатор на полную мощность. Поэтому групповой трансформатор имеет известные преимущества при больших мощностях, где условия транспорта и надежность при эксплуатации имеют особенно важное значение. Однако групповой трансформатор несколько дороже трехфазного трансформатора на ту же мощность, занимает больше места и имеет меньший к. п. д.

Читайте также:  Как перезагрузить андроид без кнопки питания

Трехфазные трансформаторы со связанной магнитной системой выполняются главным образом стержневыми (рис. 2).

Получение такого магнитопровода можно представить себе следующим образом. Три одинаковых однофазных трансформатора выполнены так, что их первичные и вторичные обмотки размещены на одном стержне сердечника магнитопровода, а другой стержень каждого трансформатора не имеет обмотки. Если эти три трансформатора расположить так, чтобы стержни, не имеющие обмоток, находились рядом, то три стержня можно объединить в один — нулевой.

Следовательно, в фазе, обмотка которой помещена на среднем стержне, протекает меньший намагничивающий ток, чем в фазах, обмотки которых помещены на крайних стержнях.

Не всегда один трансформатор может справиться с нагрузкой от потребителей, поэтому обычно они работают параллельными группами. Но не каждый трансформатор может работать в параллельной группе с другими трансформаторами. Для параллельной работы трансформаторов необходимо чтобы они удовлетворяли следующим условиям.

Равенство коэффициентов трансформации К=ВН/НН. где ВН — высшее напряжение, НН — низшее напряжение. При несоблюдении этого условия между вторичными обмотками трансформаторов будет циркулировать уравнительный ток. приводящий к перегреву трансформатора.

Равенство напряжений короткого замыкания Uк %. В противном случае трансформаторы не будут загружаться пропорционально своим мощностям. Одинаковые группы соединений. При различных группах соединений параллельно работающих трансформаторов между векторами их вторичных напряжений будет сдвиг фаз, вызывающий уравнительные токи между обмотками трансформаторов.

Асинхронные двигатели.

Асинхронный двигатель отличается простотой конструкции несложностью обслуживания. Как и любая машина переменного тока асинхронный двигатель состоит из двух основных частей; статора и ротора. Статором называется неподвижная часть машины, ротором — ее вращающаяся часть. Асинхронная машина обладает свойством обратимости, т. е. может быть использована как в режиме генератора, так и в режиме двигателя. Многофазная обмотка переменного тока создает вращающееся магнитное поле, скорость вращения которого в минуту

Если ротор вращается со скоростью п2, равной скорости вращения магнитного поля (n2=n1), то такая скорость называется синхронной.

Если ротор вращается со скоростью, не равной скорости вращения магнитного поля < n2n1), то такая скорость называется асинхронной.

В асинхронном двигателе рабочий процесс может протекать только при асинхронной скорости, т. е. при скорости вращения ротора, не равной скорости вращения магнитного поля.

Скорость ротора может очень мало отличаться от скорости юля, но при работе двигателя она будет всегда меньше (n2 5 6789Следующая ⇒

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Предположим, что трансформатор работает в режиме холостого хода (рис.1.15, а), т.е. к зажимам его первичной обмотки подведено напряжение U1, а вторичная обмотка разомкнута (U2=0). Ток I в первичной обмотке при этих условиях называют током холостого хода.

Магнитодвижущая сила (МДС) Iw1, созданная этим током, наводит в магнитопроводе трансформатора основной магнитный поток, максимальное значение которого

(1.18)

где RM магнитное сопротивление магнитопровода.

При замыкании вторичной обмотки на нагрузку ZH (рис. 1.15, б) в ней возникает ток I2. При этом ток в первичной обмотке увеличивается до значения I1.

(1.19)

Этот поток можно определить из (1.9):

(1.20)

Из (1.20) следует, что значение основного магнитного потока Ф практически не зависит от нагрузки трансформатора, так как напряжение U1 неизменно. Однако следует иметь в виду, что это положение является приближенным и относится к случаям нагрузки, не превышающим номинальную. Объясняется это тем, что положение о неизменности потока Ф принято на основании уравнения , которое не учитывает падений напряжения в первичной цепи [сравните с (1.13)].

Принятое положение Ф = const позволяет приравнять выражения (1.18) и (1.19):

Рис. 1.15. Режимы холостого хода (а) и нагрузки (б) в однофазном трансформаторе

и получить уравнение МДС трансформатора:

(1.21)

Преобразуя (1.21), можно МДС первичной обмотки представить в виде суммы двух составляющих:

Составляющая наводит в магнитопроводе трансформатора основной магнитный поток Ф, а составляющая уравновешивает МДС вторичной обмотки .

Воздействие МДС вторичной обмотки трансформатора на основной магнитный поток Ф можно объяснить с помощью правила Ленца. В соответствии с этим правилом наведенная в обмотке ЭДС создает в этой обмотке такой ток, который своим магнитным действием направлен против причины, вызвавшей появление этой ЭДС. Причиной наведения ЭДС Е2 во вторичной обмотке трансформатора является основной магнитный поток Ф, поэтому ток во вторичной обмотке I2 создает МДС , направленную встречно потоку Ф, т. е. находящуюся с ним в противофазе и стремящуюся ослабить этот поток. Если бы обмотка w2 была замкнута накоротко или на чисто индуктивное сопротивление и при этом не обладала активным сопротивлением, то ток отставал бы по фазе от ЭДС на угол Ψ2 = 90° и вся МДС оказывала бы на магнитопровод размагничивающее действие. Но в реальных условиях вторичная обмотка замкнута на сопротивление нагрузки ZH = rн ± jxH, да к тому же она сама обладает активным сопротивлением r2. Поэтому фазовый сдвиг тока от ЭДС отличается от 90° и с основным магнитным потоком Ф взаимодействует не вся МДС , а лишь ее реактивная составляющая.

Читайте также:  Как найти общее число электронов

При активно-индуктивной нагрузке, когда ZH = rн ± jxH и ток нагрузки отстает по фазе от ЭДС вторичной обмотки Е2 на угол Ψ2, МДС своей реактивной (индуктивной) составляющей оказывает на магнитопровод трансформатора размагничивающее действие:

где — реактивная составляющая тока нагрузки.

На рис. 1.16, а представлена векторная диаграмма МДС для случая активно-индуктивной нагрузки трансформатора. На диаграмме вектор ЭДС вторичной обмотки отстает по фазе от вектора основного магнитного потока Фmах на угол 90°, а вектор МДС вторичной обмотки отстает по фазе от ЭДС Е2на угол Ψ2 (рис. 1.16, а). Из выполненных на этой диаграмме построений видно, что реактивная (индуктивная) составляющая МДС вторичной обмотки находится в противофазе с основным магнитным потоком Фmах , т. е. оказывает на магнитопровод трансформатора размагничивающее действие.

Анализируя работу трансформатора, необходимо отметить, что при нагрузке трансформатора в пределах номинального значения основной магнитный поток Ф изменяется весьма незначительно и принятое ранее положение Ф ≈ const вполне допустимо. Происходит это потому, что МДС вторичной обмотки , реактивная составляющая которой оказывает на магнитопровод размагничивающее действие, компенсируется составляющей первичной МДС:

(1.22)

При колебаниях тока нагрузки трансформатора изменяется МДС вторичной обмотки , а это вызывает соответствующие изменения МДС первичной обмотки за счет ее составляющей — . Что же касается составляющей МДС холостого хода , то ее значение остается практически неизменным, достаточным для создания в магнитопроводе трансформатора основного магнитного потока Ф ≈ const.

При активно-емкостной нагрузке трансформатора, когда ZH = rн ± jxн и ток нагрузки опережает по фазе ЭДС на угол Ψ2, реактивная (емкостная) составляющая МДС вторичной обмотки совпадает по фазе с основным магнитным потоком Фmах и подмагничивает магнитопровод трансформатора (рис. 1.16, б). В этом случае, так же как и при активно-индуктивной нагрузке [см. (1.22)], составляющая первичной МДС ( ) компенсирует действие вторичной МДС .

Разделив уравнение МДС (1.21) на число витков w1, получим

(1.23)

где , — ток нагрузки (вторичный ток), приведенный к числу витков первичной обмотки.

Другими словами, это такой ток, который в обмотке с числом витков w1 создает такую же МДС, что и ток I2 во вторичной обмотке w2, т. е.

Преобразовав выражение (1.23), получим уравнение токов трансформатора:

(1.24)

Из этого уравнения следует, что первичный ток I1можно рассматривать как сумму двух составляющих: составляющую I, создающую МДС Iw1, необходимую для наведения в магнитопроводе основного магнитного потока Ф, и составляющую – I’2, которая, создавая МДС – I’2 w1 компенсирует МДС вторичной обмотки I2w2 трансформатора. Такое действие составляющих первичного тока приводит к тому, что любое изменение тока нагрузки I2 сопровождается изменением первичного тока I1 за счет изменения его составляющей – I’2, находящейся в противофазе с током нагрузки I2.

Основной магнитный поток Ф является переменным, а поэтому магнитопровод трансформатора подвержен систематическому перемагничиванию. Вследствие этого в магнитопроводе трансформатора имеют место магнитные потери от гистерезиса и вихревых токов, наводимых переменным магнитным потоком в пластинах электротехнической стали. Мощность магнитных потерь эквивалентна активной составляющей тока х.х. Таким образом, ток х.х. имеет две составляющие: реактивную IОР, представляющую собой намагничивающий ток, и активную IОА, обусловленную магнитными потерями:

(1-25)

Обычно активная составляющая тока х.х. невелика и не превышает 0,10 от IО, поэтому она не оказывает заметного влияния на ток х.х.

Рис. 1.17. Разложение тока х.х. на составляющие

На рис. 1.17 представлена векторная диаграмма, на которой показаны векторы тока х.х. и его составляющих и . Угол δ, на который вектор основного магнитного потока отстает по фазе от тока , называют углом магнитных потерь. Нетрудно заметить, что этот угол увеличивается с ростом активной составляющей тока х.х. , т. е. с ростом магнитных потерь в магнитопроводе трансформатора.

Сила тока х.х. в трансформаторах большой и средней мощности соответственно составляет 2—10% от номинального первичного тока. Поэтому при нагрузке, близкой к номинальной, пренебрегая током IО и преобразуя (1.22), получим

(1.26)

т.е. токи в обмотках трансформатора обратно пропорциональны числам витков этих обмоток: ток больше в обмотке с меньшим числом витков и меньше в обмотке с большим числом витков. Поэтому обмотки НН выполняют проводом большего сечения, чем обмотки ВН, имеющие большее число витков.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10236 — | 7597 — или читать все.

Ссылка на основную публикацию
Adblock detector