Возведение логарифма в квадрат

Возведение логарифма в квадрат

Возведение логарифма в степень

Автор Евгений Добрицкий задал вопрос в разделе Естественные науки

При возведение в квадрат логарифма, X тоже возводится в квадрат или только логарифм? и получил лучший ответ

Ответ от Дивергент[гуру]
Деточка, ты спрашиваешь какую-то полную глупость. Возводится в квадрат значение логарифма. Ты понимаешь, что логарифм чего-то там по какому-то там основанию — это некое число? Так вот это самое некое число и возводится в квадрат! И больше в квадрат ничего не возводится!
Вот, например, логарифм 243 по основанию 3 равен 5. Потому что, чтобы получить 243, тройку надо возвести в пятую степень. Так вот квадрат этого логарифма равен 25.
Записала бы я это здесь так:
log^2(3)(243)=25

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Как научиться решать логарифмы?

Объясним все человеческим языком. Логарифмы – ОЧЕНЬ простая тема.

Чтобы понять как их решать – нужно: разобраться со свойствами логарифма и понимать что как называется, понимать разницу между видами логарифмов (десятичными и натуральными).

Ну и уметь возводить число в степень, знать таблицу умножения (а это ты точно умеешь).

Все. Больше ничего не нужно.

Прочитай эту статью, обязательно реши примеры и решение логарифмов навсегда станет для тебя задачкой easy-peasy lemon squeezy — очень легкой 🙂

Что такое логарифм?

Для начинающих объясним все человеческим языком. Логарифмы – очень простая тема. Чтобы понять как их решать – нужно всего лишь разобраться что как называется, знать таблицу умножения и уметь возводить в число в степень. Все. Больше ничего не нужно.

Читайте также:  Скрипт для рассылки вконтакте

Начнем с простого. Как решить уравнение ?

Очень легко – просто ответь на вопрос в какую степень нужно возвести число чтобы получить ? Решаем методом подбора: два в первой степени – нет, два во второй степени – нет, два в третей степени – ДА! Двойку нужно возвести в ТРЕТЬЮ степень, чтобы получить восемь ( ) и значит решением уравнения будет число три ( ).

Следующий вопрос. Как решить уравнение ?

Опять просто ответь на вопрос в какую степень нужно возвести число , чтобы получить число ? Попытаемся подобрать: два во второй степени равно четыре – мало, два в третьей степени равно восемь – много. Метод подбора сразу ответ не дает… Да и вообще, в этом случае подобрать решение не получится – ведь это не только нецелое число, это число даже не рациональное. Для нахождения таких решений было придумано понятие логарифм: . В общем виде он записывается так:

То есть логарифм – это степень, в которую нужно возвести основание , чтобы получить аргумент .

Вернёмся к . Если ты посчитаешь на калькуляторе, то получишь и т.д. Это число иррациональное. Оно мало того, что не подбирается, оно еще и не кончается…

Ну и как с такими числами работать? Как их запоминать? Как их записывать?

В нашем случае решение уравнения можно записать как или как .

Согласись второе выражение гораздо удобнее, чем первое. И оно, кстати, абсолютно точное.
Словами это произносится как: «Решением уравнения два в степени икс равно пяти является логарифм пяти по основанию два, или логарифм по основанию два от пяти».

Кстати, а ты заметил что и у степени числа и у логарифма основание всегда находится «ВНИЗУ». Легко запомнить правда? А вот «вверху», у степени находится ее показатель, а у логарифма – аргумент.

Читайте также:  Прохождение god of war на psp

Выражение можно также записать в виде . Читается так: «Логарифм восьми по основанию два равен трем» или «Логарифм по основанию два от восьми равен трем».

Теперь более общая запись:

Читается так: «Логарифм по основанию от равен », и означает: «Чтобы получить число , нужно число возвести в степень »:

Иными словами, – это степень, в которую нужно возвести , чтобы получить .

Примеры вычисления логарифмов

  1. , так как число нужно возвести во вторую степень, чтобы получить .
  2. Чему равен ? Заметим, что , тогда , то есть нужно возвести в степень , чтобы получить .
  3. А чему равен ? Обращать внимание нужно, в первую очередь, на основание. Возможно ли представить как в какой-то степени? Да, возможно: запишем это число в виде обычной дроби: . Значит, .
  4. Еще пример. Чему равен ? В какую степень надо возвести , чтобы получить ? Вспоминаем, что любое число в нулевой степени равно (подробнее читай в разделе «Степень и ее свойства»). Значит, . Более того, логарифм с любым основанием от единицы равен .
  5. . В этом случае аргумент равен корню основания: . Но мы помним, что корень тоже можно представить в виде степени (с дробным показателем): .

Попробуй найти следующие логарифмы самостоятельно:

Как возвести логарифм в квадрат, когда под знаком логарифма стоит произведение или частное? Как упростить квадрат логарифма степени?

Как возвести в квадрат логарифм произведения.

Так как логарифм произведения равен сумме логарифмов, квадрат логарифма произведения равен квадрату суммы логарифмов множителей:

0,a
e 1,x > 0,y > 0.]" title="Rendered by QuickLaTeX.com"/>

Если изменить условия:

0,a
e 1,xy > o,]" title="Rendered by QuickLaTeX.com"/>

то каждый из множителей под знаком логарифма нужно брать по модулю:

Как возвести в квадрат логарифм частного.

Так как логарифм частного равен разности логарифмов, то квадрат логарифма частного равен квадрату разности логарифмов делимого и делителя:

Читайте также:  Точка массой 10 г совершает гармонические колебания

0,a
e 1,x > 0,y > 0.]" title="Rendered by QuickLaTeX.com"/>

При изменении условий

0,a
e 1,frac > o,]" title="Rendered by QuickLaTeX.com"/>

под знаком логарифма появляются модули:

Возведение в квадрат логарифма степени.

В логарифме степени показатель можно вынести за знак логарифма.

При возведении в квадрат логарифма степени показатель степени также следует возвести в квадрат:

0,a
e 1,x > 0.]" title="Rendered by QuickLaTeX.com"/>

0,a
e 1,x
e 0,]" title="Rendered by QuickLaTeX.com"/>

то при чётном показателе степени при вынесении показателя за знак логарифма под знаком логарифма появляется модуль:

Аналогично возводят в квадрат логарифм со степенью в основании:

0,a
e 1,x > 0;]" title="Rendered by QuickLaTeX.com"/>

0,a
e 1,x
e 0.]" title="Rendered by QuickLaTeX.com"/>

Ссылка на основную публикацию
Adblock detector