Вычислить интеграл если область ограничена линиями

Вычислить интеграл если область ограничена линиями

Введите подинтегральную функцию,
для которой необходимо вычислить двойной интеграл

Найдём подробное решение для двойного интеграла от функции f(x, y)

Введите вверхние и нижние пределы для области интегрирования и подинтегральную функцию.
Если подинтегральной функции нет, то укажите 1

Правила ввода выражений и функций

© Контрольная работа РУ — калькуляторы онлайн

Администратор
Роман

Tel. +380685083397
yukhym.roman@gmail.com
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

В этом разделе вы найдете подробные решения заданий с использованием двойных интегралов разной сложности. Для удобства использования примеры разбиты по подразделам:

Порядок интегрирования: примеры решений

Задача 1. Изменить порядок интегрирования.

$$ int_0^1 dy int_<-sqrt>^0 fdx +int_1^e dy int_<-1>^<ln> fdx $$

Задача 2. Свести к однократному интегралу

Задача 3. Изменить порядок интегрирования. Нарисовать область интегрирования и вычислить двойной интеграл двумя способами.

Трудности с задачами? МатБюро поможет с интегралами.

Двойной интеграл по области: примеры решений

Задача 4. Вычислить двойной интеграл по области $D$

Задача 5. Вычислить двойной интеграл от функции $z=x^3+y^3-3xy$ по области D, заданной системой неравенств $0 le x le 2$, $y le sqrt$. Область D изобразить на рисунке.

Задача 6. Вычислить с помощью перехода к полярным координатам двойной интеграл по указанной области $D$.

Площади: примеры решений

Задача 7. Вычислить площадь области D: $y=-2x^2+2, y ge -6$.

Задача 8. Найти площадь области $x^2-2x+y^2=0$, $x^2-4x+y^2=0$, $y=0$, $y=sqrt<3>x$.

Задача 9. С помощью двойного интеграла вычислить площадь фигуры, ограниченной линиями (неравенствами) $y=x^2,x=2y^2$

Задача 10. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной заданными линиями.

Задача 11. Вычислить площадь области, заданной неравенствами $(x-r)^2+y^2 le r^2, y ge 0, -2x+2r ge y$, перейдя предварительно к полярным координатам.

Читайте также:  Valtec италия или китай

Если вам нужна помощь в нахождении интегралов, выполнении домашней работы или типовика по интегральному исчислению, будем рады принять ваш заказ на решение. Стоимость от 60 рублей, срок от нескольких часов.

Объемы: примеры решений

Задача 12. Найти объем тела, заданного ограничивающими его поверхностями.

$$ x^2+y^2=2y, quad x^2+y^2=5y, quad z=sqrt, quad z=0. $$

Задача 13. С помощью двойного интеграла вычислить объем тела, ограниченного поверхностями

$$ a^2 le x^2+y^2 le b^2, quad x^2-y^2-z^2 ge 0, xge 0$$

Задача 14. Вычислить объем тела, ограниченного поверхностями, с помощью двойного и тройного интеграла $x^2+y^2=4x,x^2+y^2+z^2=16$

Масса, центр тяжести, момент: примеры решений

Задача 15. Пластина $D$ задана уравнениями $x=1$, $y ge 0$, $y^2=4x$ с плотностью $mu = 6x+3y^2$. Найти массу пластины.

Задача 16. Найти координаты центра тяжести однородной пластины, ограниченной кривой

$$ x=a(t-sin t), y=a(1-cos t), quad 0 le t le 2pi; y=0. $$

Задача 17. Найти центр тяжести плоской пластины, ограниченной кривой $(x+y)^4=xy$, имеющей плотность

Задача 18. Используя двойной интеграл, вычислить статический момент относительно оси $Ox$ тонкой однородной пластинки, имеющей форму области $D$, ограниченной заданными линиями. Построить чертеж области интегрирования

Задача 19. Найти массу круглой пластины $D: x^2+y^2 le 1$ с поверхностной плотностью $
ho(x,y)=3-x-y$.

Задача 20. Найти момент инерции относительно оси $Ox$ однородной фигуры, ограниченной двумя кривыми $y^2=8x+4$, $y^2=-8x+4$.

Ссылка на основную публикацию
Adblock detector