Заземление на корпус прибора

Заземление на корпус прибора

Надежная изоляция электрических приборов является важной составляющей электробезопасности. Однако, какой бы надежной ни была изоляции, полностью полагаться на нее нельзя. Происходящие по разным причинам перенапряжения в электрической сети ведут к повреждению изоляции, что несет в себе прямую угрозу для жизни людей.

Заземление бытовых приборов

Для защиты от поражения электрическим током используют заземление. Достичь электробезопасности можно путем применения заземляющих устройств, состоящих из заземлителей и заземляющих проводников. Заземление может использоваться в сетях, рассчитанных на любое напряжение.

Заземление бытовых приборов в квартире многими людьми рассматривается, как излишняя предосторожность. Однако количество бытовых электротравм, связанных с эксплуатацией техники, имеющей повреждения изоляции, свидетельствует об обратном. Большинство несчастных случаев вызвано одновременным касанием имеющего повреждение изоляции бытового прибора и проводящего предмета. В жилых домах в качестве таких предметов чаще всего выступают радиаторы и трубы центрального отопления, металлические мойки и незаземленные варочные плиты.

Рисунок №1. Электрооборудование в доме

Какие бытовые приборы необходимо заземлять в доме

Большая часть домашнего электрооборудования является источником повышенной опасности поражения электрическим током в быту. Для полного исключения возможных рисков необходимо заземлять стиральные машины, электрические и индукционные плиты, микроволновые печи, персональные компьютеры, бойлеры. Безопасности бойлеров следует уделить самое пристальное внимание. Вода является наилучшим проводником электричества. Нарушение изоляции бойлера приведет к тому, что, прикоснувшись к водонагревателю человек получит удар электрическим током. Смонтированное заземление примет на себя большую часть тока. Попадание фазы на заземленный бак бойлера ведет к мгновенному срабатыванию автоматического выключателя.

Рисунок №2. Схема проводки в квартире

Зачем нужно заземлять бытовые приборы

Согласно установленным нормативам, напряжение в бытовых электросетях не может превышать 220 В. Бытовые приборы подключаются к сетям через розетки. К каждой розетке идут два провода. Один из них, называемый фазным, является непосредственно токоведущим проводником. Второй провод, называемый нулевым, служит для отвода электричества после того, как замкнутся контакты розетки и выключателя.

При контакте фазного и нулевого проводов вне розетки возникает короткое замыкание. В подобных ситуациях ток достигает больших значений, что ведет к срабатыванию автоматических выключателей, которые осуществляют разрыв цепи и отключают проводку от источника питания.

Настоящие короткие замыкания случаются довольно редко. Значительно чаще износ изоляции приводит не к замыканию двух проводов, а к появлению токов утечки. В результате появившееся на корпусе бытовых приборов напряжение может привести к поражению электрическим током. Токи утечки должны фиксироваться устройством защитного отключения (УЗО), которое размыкает цепь в случае превышения опасной для человека величины тока.

Правила заземления приборов

Для заземления приборов необходимы специальной конструкции розетки с заземляющими контактами. На таких розетках есть место заземления прибора. Если предусмотрено присоединение провода заземления напрямую к корпусу, обозначение заземления указывается на приборах специальным знаком.

Рисунок №3. Розетка с контактами заземления

К розетке нужно подвести трехжильный провод. Современные кабели, используемые для проводки имеют три провода, которые для идентификации маркируются разными цветами. Нулевой провод окрашивают в синий цвет, фазный в коричневый или черный. Третий проводник−заземляющий, может быть желтым, зеленым или двухцветным (желтый +зеленый).

Рисунок №4. Кабель с жилой заземления

При трехпроводных сетях в квартире фазу, ноль и заземление нужно брать в распределительной коробке, относящейся к линии розеток. Заземление приборов, в случае когда проводка двухжильная, делается несколько иначе. При двухпроводных сетях, когда заземляющий провод отсутствует, его проводят от электрощита. При этом следует принять во внимание, что сечение медного заземляющего проводника не должно быть меньше 2,5 мм.
Категорически запрещается использовать в качестве заземлителя водопроводные и газовые трубы, или трубы центрального отопления.

Универсальное модульное заземление

При мероприятиях по организации электробезопасности в жилых и промышленных объектах удобно использовать модульное заземление ZANDZ. Этот тип заземлителя состоит из покрытых слоем меди стальных штырей. Все составные части конструкции объединены между собой в единое заземляющее устройство посредством резьбового соединения. При этом сварка элементов заземления не требуется, весь монтаж выполняется силами одного человека с помощью отбойного молотка. Площадь земли, занимаемая заземлителем, составляет менее 0,6 м2, благодаря чему можно монтировать модульное заземление в подвалах домов и в непосредственной близости от стен. Медное покрытие заземляющих штырей устойчиво к коррозии, что обеспечивает стабильную работу заземления на протяжении долгих лет.

Возможные вариации выполнения модульного заземления:

имеет небольшое количество вертикальных электродов, которые размещаются на большой глубине

имеет большое количество вертикальных электродов, которые размещаются на небольшой глубине

монтаж заземления этого типа производится для контейнерных объектов

Заземление можно приобрести в виде готовых к установке комплектов или отдельных комплектующих.
Правильное проектирование и монтаж заземления жилых и промышленных объектов является основой электробезопасности. Для того чтобы заземление в полной мере выполняло свои функции оно должно быть качественным. Не экономьте на безопасности! Используйте качественное заземление ZANDZ!

Надежная изоляция электрических приборов является важной составляющей электробезопасности. Однако, какой бы надежной ни была изоляции, полностью полагаться на нее нельзя. Происходящие по разным причинам перенапряжения в электрической сети ведут к повреждению изоляции, что несет в себе прямую угрозу для жизни людей.

Заземление бытовых приборов

Для защиты от поражения электрическим током используют заземление. Достичь электробезопасности можно путем применения заземляющих устройств, состоящих из заземлителей и заземляющих проводников. Заземление может использоваться в сетях, рассчитанных на любое напряжение.

Заземление бытовых приборов в квартире многими людьми рассматривается, как излишняя предосторожность. Однако количество бытовых электротравм, связанных с эксплуатацией техники, имеющей повреждения изоляции, свидетельствует об обратном. Большинство несчастных случаев вызвано одновременным касанием имеющего повреждение изоляции бытового прибора и проводящего предмета. В жилых домах в качестве таких предметов чаще всего выступают радиаторы и трубы центрального отопления, металлические мойки и незаземленные варочные плиты.

Рисунок №1. Электрооборудование в доме

Какие бытовые приборы необходимо заземлять в доме

Большая часть домашнего электрооборудования является источником повышенной опасности поражения электрическим током в быту. Для полного исключения возможных рисков необходимо заземлять стиральные машины, электрические и индукционные плиты, микроволновые печи, персональные компьютеры, бойлеры. Безопасности бойлеров следует уделить самое пристальное внимание. Вода является наилучшим проводником электричества. Нарушение изоляции бойлера приведет к тому, что, прикоснувшись к водонагревателю человек получит удар электрическим током. Смонтированное заземление примет на себя большую часть тока. Попадание фазы на заземленный бак бойлера ведет к мгновенному срабатыванию автоматического выключателя.

Рисунок №2. Схема проводки в квартире

Зачем нужно заземлять бытовые приборы

Согласно установленным нормативам, напряжение в бытовых электросетях не может превышать 220 В. Бытовые приборы подключаются к сетям через розетки. К каждой розетке идут два провода. Один из них, называемый фазным, является непосредственно токоведущим проводником. Второй провод, называемый нулевым, служит для отвода электричества после того, как замкнутся контакты розетки и выключателя.

При контакте фазного и нулевого проводов вне розетки возникает короткое замыкание. В подобных ситуациях ток достигает больших значений, что ведет к срабатыванию автоматических выключателей, которые осуществляют разрыв цепи и отключают проводку от источника питания.

Настоящие короткие замыкания случаются довольно редко. Значительно чаще износ изоляции приводит не к замыканию двух проводов, а к появлению токов утечки. В результате появившееся на корпусе бытовых приборов напряжение может привести к поражению электрическим током. Токи утечки должны фиксироваться устройством защитного отключения (УЗО), которое размыкает цепь в случае превышения опасной для человека величины тока.

Правила заземления приборов

Для заземления приборов необходимы специальной конструкции розетки с заземляющими контактами. На таких розетках есть место заземления прибора. Если предусмотрено присоединение провода заземления напрямую к корпусу, обозначение заземления указывается на приборах специальным знаком.

Рисунок №3. Розетка с контактами заземления

К розетке нужно подвести трехжильный провод. Современные кабели, используемые для проводки имеют три провода, которые для идентификации маркируются разными цветами. Нулевой провод окрашивают в синий цвет, фазный в коричневый или черный. Третий проводник−заземляющий, может быть желтым, зеленым или двухцветным (желтый +зеленый).

Рисунок №4. Кабель с жилой заземления

При трехпроводных сетях в квартире фазу, ноль и заземление нужно брать в распределительной коробке, относящейся к линии розеток. Заземление приборов, в случае когда проводка двухжильная, делается несколько иначе. При двухпроводных сетях, когда заземляющий провод отсутствует, его проводят от электрощита. При этом следует принять во внимание, что сечение медного заземляющего проводника не должно быть меньше 2,5 мм.
Категорически запрещается использовать в качестве заземлителя водопроводные и газовые трубы, или трубы центрального отопления.

Универсальное модульное заземление

При мероприятиях по организации электробезопасности в жилых и промышленных объектах удобно использовать модульное заземление ZANDZ. Этот тип заземлителя состоит из покрытых слоем меди стальных штырей. Все составные части конструкции объединены между собой в единое заземляющее устройство посредством резьбового соединения. При этом сварка элементов заземления не требуется, весь монтаж выполняется силами одного человека с помощью отбойного молотка. Площадь земли, занимаемая заземлителем, составляет менее 0,6 м2, благодаря чему можно монтировать модульное заземление в подвалах домов и в непосредственной близости от стен. Медное покрытие заземляющих штырей устойчиво к коррозии, что обеспечивает стабильную работу заземления на протяжении долгих лет.

Возможные вариации выполнения модульного заземления:

имеет небольшое количество вертикальных электродов, которые размещаются на большой глубине

имеет большое количество вертикальных электродов, которые размещаются на небольшой глубине

монтаж заземления этого типа производится для контейнерных объектов

Заземление можно приобрести в виде готовых к установке комплектов или отдельных комплектующих.
Правильное проектирование и монтаж заземления жилых и промышленных объектов является основой электробезопасности. Для того чтобы заземление в полной мере выполняло свои функции оно должно быть качественным. Не экономьте на безопасности! Используйте качественное заземление ZANDZ!

Заземление электроустановок – обязательная составляющая комплекса мер по защите промышленного оборудования и работающих на нем людей от поражения током. С учетом существующего разнообразия электротехнических приборов и агрегатов вопросам их безопасной эксплуатации уделяется повышенное внимание. Каждый тип заземляемого оборудования имеет свои особенности, вынуждающие пользователей сетей принимать специальные защитные меры. В соответствие с правилами заземления электроустановок и их устройством для этих целей применяются особым образом организованные системы защиты.

Классификация систем заземления

Общепринятая классификация систем заземления осуществляется по следующим основным признакам:

  • Состояние нейтрали электросети (заземленное или изолированное).
  • Способ ее прокладки от подстанции с понижающим трансформатором до конечной электроустановки потребителя.
  • Особенности подключения нагрузки к нейтральной жиле.

Основным документом, согласно которому производится классификация этих систем, являются ПУЭ (правила заземления электроустановок). В них подробно рассматриваются характерные признаки, согласно которым принято различать действующие защитные системы. Для их обозначения применяются английские буквенные символы T, N, I, C и S, которые расшифровываются как «заземление», «нейтраль», «изолированное», «общая» и «раздельная».

Обратите внимание: По данной маркировке удается определить, какой способ защиты источника тока применен в данной системе и какие схемы защитного заземления оборудования могут быть использованы на потребительской стороне.

При обустройстве действующих линий энергоснабжения в России традиционно применяются следующие основные системы:

  • TN-C, из обозначения которой следует, что на всем протяжении трассы нулевой рабочий N и защитный PE проводники объединены в общую шину PEN (C – это «common»).
  • TN-S, означающая раздельную прокладку упоминавшихся выше проводников («Select»).
  • TN-C-S, из названия которой следует, что на части трассы проводники PE и N объединены, а начиная с какого-то места они прокладываются раздельно.

На практике также встречаются редко используемые системы TT и IT, применяемые только в исключительных случаях. Такой уникальный способ построения заземляющей структуры как система с изолированным нулем, например, востребован при электроснабжении сооружений, где необходимо обеспечить высокий уровень безопасности. В частности, это касается электрооборудования, устанавливаемого на горнодобывающих шахтных предприятиях. Объясняется это тем, что при подземных работах нередки случаи скопления взрывоопасных газов, а система IT, особенностью которой является пониженное искрообразование, в этом случае является самой безопасной.

Требования к заземлению электроустановок до 1000 Вольт

Заземление оборудования – это комплекс технических мероприятий, позволяющих получить надежное электрическое соединение между защищаемыми корпусами электроустановок и землей. Оно организуется с целью защиты оперативного персонала и работающих на оборудовании людей от случайного токового удара.

В соответствии с требованиями ГОСТ 12.1.030-81 защитное заземление электроустановки следует выполнять:

  • при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех случаях;
  • при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.

Важно! При правильно обустроенной системе заземления попавший на корпус станка, например, опасный потенциал не причинит прикоснувшемуся к нему человеку никакого вреда.

Объясняется это тем, что, при пробое изоляции основная часть токового заряда стечет по заземляющей шине в защитный контур, сопротивление которого на порядок ниже, чем тот же показатель для тела человека.

Естественные заземлители

Согласно правилам ПУЭ, корпуса технологического оборудования и других приборов должны подключаться к естественным или искусственным заземлителям (ИЗУ). При реализации первого из этих способов традиционно используются следующие подсобные элементы:

  • металлические каркасы проложенных в земле конструкций, имеющие прямой контакт с ней;
  • металлические кожуха кабелей, прокладываемых непосредственно в грунте;
  • обычные металлические трубы (за исключением газовых и нефтепроводов);
  • рельсы железнодорожных путей.

Естественные заземлители

Обратите внимание: Использование готовых конструкций существенно упрощает решение проблемы заземления, упрощая этот процесс.

Кроме того, их использование при организации эффективного заземления позволяет несколько снизить затраты на его обустройство.

Важность сопротивления стеканию току

Основное требование к заземлениям до 1000 Вольт – их способность создать надежную цепочку для стекания аварийных токовых зарядов в грунт. Ее оценивают величиной сопротивления, которое приходится преодолевать токам замыкания на землю.

Ток замыкания на землю будет протекать с поврежденной фазы на корпус электроустановки и через заземляющее устройство в землю

Согласно нормативным документам (ПУЭ, в частности) сопротивление заземления (сопротивление растеканию электрического тока) должно быть:

  • для частных домов с напряжением питания 220 и 380 Вольт, должно составлять не более 30-ти Ом.
  • для промышленного оборудования (трансформаторов подстанций, в частности, или генераторов и сварочных аппаратов) не должен превышать 4-х Ом.
  • для источника тока (генератора или трансформатора) не более 2, 4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания.

Чтобы достигнуть нормируемых ПУЭ значений сопротивления, потребуется принять специальные меры. Обычно они сводятся к следующим типовым процедурам:

  1. увеличение площади соприкосновения составляющих устройств заземления с грунтом;
  2. повышение качества контактов в местах сочленения отдельных элементов и медных соединительных шин;
  3. улучшение проводимости самой почвы (за счет постоянного увлажнения или добавления соляного раствора, например).

Теми же требованиями предписывается периодически (не реже одного раза в 6 лет) проверять сопротивление заземляющего контура на соответствие его величины утвержденным нормам.

Работа заземления при нарушении защитной изоляции токоведущих частей

Самая распространенная неисправность, встречающаяся при эксплуатации электрооборудования – замыкание фазы на металлический корпус из-за разрушения защитной изоляции.

Дополнительная информация: В современных бытовых приборах, оснащенных импульсными источниками питания с вилкой евро стандарта, опасный потенциал может постоянно присутствовать на металлическом корпусе.

В зависимости от того, какие защитные меры приняты при работе с оборудованием, возможны следующие степени безопасности пользователя:

  1. Самый опасный вариант – когда металлический корпус прибора не заземлен, а УЗО совсем не установлено. Попадание фазы на проводящие ток части никак не проявляется, кроме как ощутимый удар при случайном прикосновении.
  2. В отсутствие УЗО корпус подключен к контуру установленного заземления, а ток утечки по цепи стекания очень велик. В этом случае прибор сработает мгновенно и отключает питающую линию или отдельную ее цепочку.
  3. При наличии УЗО корпус не заземлен, что обнаруживается только при протекании тока утечки, который вызовет срабатывание устройства защиты. За время порядка 200-300 миллисекунд прикоснувшийся к прибору человек ощутит лишь легкий удар током.
  4. И, наконец, самый безопасный вариант предполагает заземление корпуса и одновременную установку в данную ветку отдельного УЗО.

О первом случае, связанном с отсутствием специальных защитных средств, нечего и говорить, а вот второй вариант не совсем безопасен. Это объясняется тем, что при большом сопротивлении переходов и значительных номиналах предохранителей остаточный потенциал на корпусе прибора очень опасен для работающего человека. Так, при сопротивлении заземляющей конструкции в 4 Ома и предохранителе номиналом 25 Ампер он может достигнуть 100 Вольт.

Важно! В последнем случае два защитных устройства дополняют друг друга и нивелируют возможные неполадки в одном из них.

При попадании фазы на корпус, а через него – на заземляющий проводник ток благополучно стекает в землю. Одновременно с этим УЗО мгновенно реагирует на утечку и отключает линию и электроустановку, исключая возможность поражения работающего на ней персонала.

Схема работы заземления при нарушении изоляции токоведущих частей электрооборудования

Помимо этого, если ток утечки существенно превышает порог срабатывания установленного в цепи предохранителя – может сработать и сам защитный элемент, дублируя действие УЗО. Какой из этих двух приборов отключит цепь первым – зависит от их быстродействия и величины тока стекания на землю (при этом не исключается их одновременное срабатывание).

Защита станков и электрооборудования в цехах

В соответствие с действующими правилами ПУЭ различные виды заземлений в электроустановках до 1000 Вольт отличают по принадлежности их к той или иной системе. А по типу заземляемых устройств различают следующие варианты:

  • Защита типового станочного оборудования.
  • Заземление электродвигателей и сварочных аппаратов.
  • Защита передвижных установок и эксплуатируемых электроприборов.

В этом разделе рассматривается первый пункт из перечня, касающийся станков и другого оборудования, устанавливаемого в заводских цехах.

Хорошо известно, что при работе на станочном оборудовании риск случайного попадания фазы на корпус достаточно велик. Чтобы правильно заземлить станок в цеху – потребуется разобраться со следующими моментами:

  1. Где проложен заземляющий контур в рабочей зоне.
  2. Какой толщины должна выбираться шина, применяемая для соединения корпуса станка с защитным контуром.
  3. В каком месте накладывается стационарное заземление.
  4. Какие заграждающие приспособления допускается использовать для ограничения доступа к опасным частям оборудования.

Рассмотрением всех этих вопросов должен заниматься цеховой электрик, который знаком с расположением элементов заземляющего хозяйства и полностью владеет информацией по порядку подсоединения корпуса станка к ЗУ. Он должен знать, в частности, что для заземления электрооборудования в его конструкции предусмотрена специальная точка, к которой подсоединяется заземляющая шина.

Правила заземления электродвигателя

Согласно действующим нормативам электродвигатели также подлежат обязательному защитному заземлению.

Обратите внимание: Исключением из этого требования является ситуация, когда корпус электродвигателя располагается на металлическом пьедестале, непосредственно связанном с грунтом.

Во всех остальных случаях его обязательно нужно будет соединить специальной медной жилой с заземляющим контуром (фото ниже).

В ПУЭ особо отмечается, что такое соединение должен иметь каждый электродвигатель, независимо от их количества в данном электрохозяйстве.

Последовательное подключение нескольких агрегатов в заземляющую цепочку категорически запрещено (в этом случае при обрыве линии в одном месте заземления лишаются все двигатели).

Для грамотного обустройства ЗУ в подводящем силовом кабеле 380 Вольт должна быть предусмотрена отдельная (дополнительная) шина. Один ее конец подключается к «земляной» клемме распредкоробки электродвигателя, а второй – непосредственно к корпусу силового шкафа.

Важно! В этом случае должна соблюдаться последовательность установки заземления, согласно которой перед подсоединением кабеля сначала к ЗУ подключается сам электрический щиток.

Сечение проводников, используемых при обустройстве заземления для электродвигателей должно соответствовать нормам, приведенным в ПУЭ (смотрите таблицу).

Таблица выбора сечения заземляющих проводников

Заземление сварочных аппаратов

При работе со сварочным оборудованием заземление его корпуса согласно требованиям ПУЭ также обязательно. Помимо этой части электрического агрегата заземляться должен один из выводов трансформаторной вторичной обмотки (к другой клемме подсоединяется держатель электродов). Заземляемый вывод на корпусе обозначается соответствующим значком и оснащается приспособлением, надежно фиксирующим протянутую от защитного контура шину.

Величина переходного сопротивления защитного контура или ЗУ для сварочного оборудования не должна превышать 10-ти Ом. Если потребуется повысить электропроводимость заземляющей конструкции – увеличивают контактную площадь всех соединений, включая поверхность соприкосновения с землей.

Как и в случае с рассмотренными ранее электродвигателями последовательное включение сварочных аппаратов в заземляющую цепочку запрещено.

Защита передвижных установок

Все, что было рассмотрено ранее, традиционно относится к обычному стационарному оборудованию. Иной подход наблюдается при необходимости заземления передвижных электроустановок, для которых выполнение требований по переходному сопротивлению несколько затруднено. В связи с этим ПУЭ допускают повышение его величины до предельного значения, равного 25-ти Омам.

Обратите внимание: В отдельных случаях допускается в качестве заземления для передвижек применять имеющиеся на объекте стационарные ЗУ.

Последнее требование справедливо лишь для установок с автономным питанием, имеющим изолированную от земли нейтраль (в качестве примера может быть приведено ГРПШ).

Этот вид заземляющих устройств традиционно применяется для тех образцов оборудования, которые не являются источниками питания для остальных установок и не склонны к искрообразованию. Другая область их применения – передвижные агрегаты, оснащенные собственными стационарными заземлителями, не используемыми в данный момент. Передвижные установки с автономным питанием из-за возможного образования трущихся сочленений и изолированной от земли нейтрали подлежат регулярному освидетельствованию в части состояния защитной оболочки (изоляционного покрытия).

Защита электроприборов

Для обеспечения требуемого уровня защиты при работе с электрическими приборами различного типа возможны следующие защитные меры:

  1. надежная защита открытых для общего доступа токоведущих частей;
  2. усиление защитной изоляции методом ее наращивания;
  3. ограничение доступности к корпусам оборудования.

Кроме того, для этих целей могут применяться пониженные напряжения (если это позволяют особенности конструкции).

Чтобы избежать нежелательных пробоев изоляции и попадания опасного напряжения на корпуса электроприборов используются следующие «классические» методы:

  • Наличие защитного заземления.
  • Система выравнивания потенциалов.
  • Дополнительная (усиленная) изоляция токоведущих частей.

В отдельных случаях ограничение проявляется в том, что такие образцы электроаппаратуры не допускается эксплуатировать в особо опасных помещениях (влажных или с сильным запылением). Если наряду с заземлением применяются другие способы защиты работающих с приборами людей – они не должны взаимно исключать друг друга. Другими словами их действие не должно снижать эффективность уже имеющейся и работающей в этом месте защиты.

Применение элементов естественных заземлителей допускается только в ситуациях, когда исключена вероятность нанесения подземным конструкциям ощутимого ущерба, связанного с протеканием по ним аварийного тока.

Заземление и зануление

Для защиты человека от удара током в особо опасных условиях эксплуатации нередко используется принцип одновременного заземления и зануления электроустановок. Всем, кто не знаком со вторым понятием, следует знать, что зануление электроустановок – это умышленное соединение их корпусов с нейтралью подводящей силовой линии. Понять принцип его действия поможет ознакомление с тем, как реализуется это способ защиты на практике.

Суть зануления состоит в превращении случайного попадания сетевого напряжения на корпус установки (из-за повреждения изоляции, например) в однофазное короткое замыкание. Отсюда следует, что и рассматриваемое нами заземление и зануление, как системы, выполняют функцию защиты от поражения электрическим током. Но делают они это каждая по-своему (смотрите фото ниже).

Схема заземления и зануления

В одном случае (при заземлении) для получения цепочки стекания тока пробоя применяется отдельное заземляющее устройство, снижающее потенциал на корпусе прибора до безопасного уровня. Для «срабатывания» системы зануления тот же корпус электрически соединяется с нейтралью питающей сети.

Токопроводящие части электроустановок подлежат заземлению или занулению во всех случаях, когда защищаемое оборудование работает в помещениях повышенной опасности (с большой запыленностью и высоким уровнем влажности). Специалистам, занимающимся вопросами его защиты важно четко представлять себе отличие этих двух понятий. Кроме того им потребуется хорошо разбираться в том как правильно сделать контур заземления для данного образца оборудования.

Периодичность проверки

Для проверки текущего состояния ЗУ согласно требованиям ПУЭ проводятся периодические испытания заземляющих контуров. Они позволяют убедиться в соответствии их параметров (сопротивления стеканию тока, в частности) установленным нормативам.

Дополнительная информация: Для контроля текущего состояния ЗУ используются специальные измерительные приборы, подключаемые к нему по особым схемам.

В ПУЭ также оговаривается, что периодичность проверки (испытаний) действующих систем зависит от класса самого проводимого обследования. Так, визуальные осмотры заземляющих конструкций должны проводиться не реже одного раз в полгода. Если та же процедура сопровождается выборочным вскрытием почвы в вызывающих подозрения местах – проверки проводятся не реже раза в 12 лет. Нормы и сроки проверок для различных конструкций заземляющих устройств могут несколько отличаться от рассмотренных показателей (смотрите монографию Р. Н. Карякина под тем же названием).

В заключение отметим, что после ознакомления с предложенным материалом заинтересованный пользователь сможет четко представить себе, для чего нужно заземление и как оно обустраивается. Знание всех тонкостей этого вопроса поможет ему уберечь себя и своих близких от опасности поражения электрическим током. Кроме того, умение разбираться в них обеспечит сохранность эксплуатируемого на объекте электрооборудования.

Читайте также:  В магазине забыли снять магнит что делать
Ссылка на основную публикацию
Adblock detector